PID参数调节总结

2023-05-16

原文链接:点击打开链接

经验:

1.采样频率低(如500ms),Kp一般是0.01级别;采样频率高(如1ms),Kp一般是1级别,

2.先只设Kp其它参数为0,然后看图形如何,一般Kp越大,系统响应速度加快,系统的超调加大,调节的时候也长,当Kp增大到一定值,闭环系统趋于不稳定;

3.2步完后,根据经验比例I/微分D=2,一般还要更大(10倍左右),比例控制使系统响应由大的超调和剧烈的振荡,微分的加强,系统的超调量减小,稳定性高,上升时间减小,响应快速;

4.积分参数在前两个参数好了就很好搞定了Ki一般是比Kd还要小0.01个级别,积分时间减小,积分参数Ki就变大因为Ki=Kp/Ti (TI是积分时间常数),积分控制作用增强,闭环的稳定性变差。

以下是参考网上的:

PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:

(1)首先预选择一个足够短的采样周期让系统工作;

(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

(3)在一定的控制度下通过公式计算得到PID控制器的参数。

PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小

比例I/微分D=2,

具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

PID参数调节总结 的相关文章

  • 安卓手机 相机和IMU数据获取标定 在VINS-MONO运行自己的数据集(含打包方法) (非常详细一步一步来)

    Android手机上图像和IMU数据采集的方法 网上有相关的教程 xff0c 但都讲的很模糊 xff0c 而且不全 xff0c 甚至还有人要收费 自己完整做了一遍发现还是有些麻烦 xff0c 固记录下来供大家参考 xff0c 希望能帮到大家
  • ros学习笔记--如何看可视化的话题与节点

    输入 rosrun rqt graph rqt graph 可以打开一个界面观察节点与话题的关系 绿色和蓝色的是节点 红色的是话题
  • opencv 环境相关

    拷贝志强服务器的环境需要配置下opencv 安装opencv的一些依赖项 xff0c 防止编译不通过 1 拷贝的库放在 opt下 xff0c 改名字为libs x64 2 安装opencv的依赖项 sudo apt get install
  • ROS CMakeLists 写法

    SET CMAKE BUILD TYPE 34 Debug 34 SET CMAKE CXX FLAGS DEBUG 34 ENV CXXFLAGS O0 Wall g ggdb 34 SET CMAKE CXX FLAGS RELEASE
  • SLAM中的小工具

    g2o中有用的小工具 ifndef G2O STUFF MISC H define G2O STUFF MISC H include 34 macros h 34 include lt cmath gt ifndef M PI define
  • Windows中公用网络与专用网络的区别

    当我们第一次打开一个Windows网络应用程序时 xff0c 会弹出选择网络类型 xff1a 专用网络 xff0c 公用网络 这个的确令人费解 xff0c 相信很多人都不知所措过 有的人干脆都选上 xff0c 这样就避免了被防火墙挡住 这里
  • ubuntu服务器修改ssh登录用户名及端口

    1 如果默认的ssh登录用户名为ubuntu xff0c 需要开通root账户 xff0c 添加密码 xff1a passwd root 还需修改配置 xff0c 具体方法 xff1a vi etc ssh sshd config 确保一下
  • 针对Android MediaCodec解码延时问题的替代解决方案

    如题 xff0c 本人在jni层实现了avc hevc的解码 xff0c 避免了在java上层调用系统的MediaCodec解码出现的延时问题 xff0c 完美支持1080P xff0c 4K xff08 具体看手机性能 xff09 xff
  • 系统环境变量path的列表不见了

    如题 xff0c 在编辑系统环境变量时 xff0c 发现path的环境变量原先是列表显示的 xff0c 看起来比较清晰 xff0c 而现在变成了一个文本框了 xff0c 就不那么一目了然了 于是在网上找到下面这个文章 xff0c 能很好解决
  • gazebo(1):gazebo常见问题及解决办法

    目录 1 将自己创建的gazebo模型导入后 xff0c 模型不停得抖动 xff0c 翻转 2 save world as 之后卡死 3 下载gazebo官方模型 xff1a 4 gazebo更新后无法打开 5 运行gazebo后报错 6
  • Makefile中的$(1)是什么

    Linux工程的编译要用到make工具 xff0c 平台不一样 xff0c 只是工具链不同 xff0c 但Makefile是编译系统的关键所在 xff0c 因此掌握Makefile的编写规则是非常重要的 尽管有了cmake这样更容易使用的编
  • gl的矩阵模式及其相应的矩阵变换函数

    以Android的GL10为例 xff0c 说明一下矩阵模式及其相应的矩阵变换函数 矩阵模式一共分为两种 xff1a gl glMatrixMode GL10 GL MODELVIEW 和 gl glMatrixMode GL10 GL P
  • 对md5sum程序的修改

    linux下自带md5sum工具 xff0c 可以对文件计算md5值 xff0c 但这个命令行工具不能直接对字符串求md5 xff0c 而对一个字符串求md5是一个比较有用的需求 xff0c 比如计算签名 于是对源码md5sum c修改了一
  • 物联网通信协议——比较-MQTT、 DDS、 AMQP、XMPP、 JMS、 REST、 CoAP

    原文链接 xff1a https blog csdn net lightrain0 article details 84343857 AMQP amp MQTT amp DDS https www youtube com watch v 6
  • 门电路逻辑符号大全(三态门,同或门,异或门,或非门,与或非门, 传输门,全加器,半加器等)

    最近要研究一下滤波器设计的无乘法器的实现 xff0c 所以要学习一下加法器的电路 xff0c 丢了一段时间 xff0c 忘的差不多了 xff0c 这里罗列一下常用的门电路的符号 这是一个1位全加器的数字电路组成 xff1a 以下两幅图可以复
  • 实函数傅里叶变换的奇偶虚实特性

    本文内容来源于他人的PPT xff0c 经本人整理而成 xff0c 算是对数字信号处理的复习吧 而实偶函数的傅里叶变换仍然是一个实偶函数的性质正是DCT的基础 xfeff xfeff
  • 多面体及欧拉公式及广义欧拉公式

    像正方体 xff0c 四棱锥这样的平面多面体属于简单多面体 xff0c 它们可以与球拓扑同构 xff0c 即可以连续拓扑变换成一个球 它们满足欧拉公式 xff1a v e 43 f 61 2 其中v是顶点 xff08 vertex xff0
  • mysql在表的某一位置增加一列的命令

    如果想在一个已经建好的表中添加一列 xff0c 可以用诸如 xff1a alter table t1 add column addr varchar 20 not null 这条语句会向已有的表t1中加入一列addr xff0c 这一列在表
  • tar命令中的-C作用

    tar xzvf abc tar gz C tmp 上面的命令将abc tar gz这个压缩包解压到当前目录下的tmp目录下 xff0c 而不是当前目录下 xff0c 这就是 C选项的作用
  • Java多线程

    一 基础概念 1 CPU核心数和线程数 多核心指的是单芯片多处理器 xff0c 将多个CPU集成到同一个芯片内 xff0c 不同的CPU可以单独的运行程序 目前主流的CPU有四核 六核 八核 增加核心数目的是为了增加线程数 xff0c 一般

随机推荐

  • ros(23):接收rviz中的2D Nav Goal、2D Pose Estimate消息

    1 rviz 教程 1 1 2D Nav Goal 2D Nav Goal Keyboard shortcut g This tool lets you set a goal sent on the 34 goal 34 ROS topic
  • RealSense SR300 坑4米 获取相机参数

    硬件 相机的原理我了解的也不甚多 xff0c 看到一篇讲的很好的文章 xff0c 就在这里引用了 SR300设备的红外线发射器 xff08 IR Laser Projector xff09 发射的 结构光 xff0c 经物体反射后会被红外线
  • 算法的分类

    算法有多种分类方式 xff0c 可以根据实现方式分类 xff0c 也可以根据设计方法分类 xff0c 还可以根据应用领域进行分类 不同的分类方式有不同的特点 按照实现方式分类 xff0c 可以将算法分为递归算法 迭代算法 逻辑算法 串行算法
  • Eclipse搭建stm32+jlink开发环境全攻略(进阶篇二)

    Eclipse搭建stm32 43 jlink开发环境全攻略 进阶篇 二 我们设计程序往往会遇到这样的一个需求 xff0c 那就是我们的程序起始位置需要重新定位 xff0c 并不是默认的0x08000000 xff0c 这种情况往往出现在有
  • 不要在小公司做底层软件开发

    在这里makekam对底层软件的理解就是指驱动开发 xff0c 代码移植等工作 其中也包括底层的算法 在小公司做软件不要做底层软件开发 xff0c 犹如在公司做硬件开发不要只是焊接电路板 小公司处于产业链的最末端 xff0c 没有自己的核心
  • 多旋翼飞控篇新手课堂教程(共九集)

    多旋翼飞控篇新手课堂第一课 xff0c 将你的NAZA M真正升级成NAZA V2 http www mxkong com thread 134 1 1 html 出处 模型控MxKong 多旋翼飞控篇新手课堂第二课 xff1a NAZA远
  • Java基础final详解

    final中文意思 最后的 最终的 final 可以修饰类 属性 方法和局部变量 1 当不希望类被继承时 可以用final修饰 final class A 不可被继承 2 当不希望父类的某个方法被子类覆盖 重写 override 时 可以用
  • socket编程总结

    socket编程总结 主机字节序和网络字节序 字节序分为大端字节序 xff08 big endian xff09 和小端字节序 xff08 little endian xff09 大端字节序 xff1a 一个整数的高位存在内存的底地址 xf
  • c++中的常见问题

    CSP J终于考完了啊 xff01 坐在考场 xff0c 是一种煎熬 xff1a 为什么那么多不会啊 xff01 xff01 xff01 这里 xff0c 总结一下在c 43 43 中的那些常见问题 xff08 作者亲身经历 xff09 x
  • 大陆毫米波雷达ARS408-21xx(内附毫米波雷达使用说明书)使用记录:第一期

    文章目录 前言一 硬件链接二 代码如何使用三 大陆毫米波雷达ARS408 21XX解析代码说明总结 前言 从我个人的学习成长历程来看 xff0c 从0到1确实很难 我个人在对这款毫米波雷达的学习的过程中也比较痛苦 xff0c 资料缺乏 xf
  • 2022年度GitHub最火的力扣算法刷题宝典,手把手教你如何刷力扣~

    前言 昨晚逛了逛GitHub xff0c 无意中看到一位P8大佬的算法刷题笔记 xff0c 感觉发现了宝藏 xff01 有些小伙伴可能已经发现了 xff0c 但咱这里还是忍不住安利一波 xff0c 怕有些小伙伴没有看到 关于算法刷题的困惑和
  • LIO-SAM学习与运行测试数据集

    文章目录 0 说明0 1 环境配置说明0 2 LIO SAM0 3 系统架构0 4 LIO SAM youtube视频演示 xff1a Rotation Dataset Walking Dataset Park Dataset Campus
  • 理解ROS:参数服务器和动态参数

    文章目录 1 程序中的getparam与param1 1 getparam xff08 无默认值 xff09 1 2 param xff08 有默认值 xff09 1 3 删除参数1 4 程序中设置参数1 5 检查参数1 6 搜索参数 2
  • ROS理解:ros中的坐标以及对tf2进行解读

    文章目录 1 ROS中的坐标2 tf到tf2的变化3 发布静态tf24 发布动态tf25 监听tf26 增加自己的frame 官网就是最好的教程 xff0c 如果阅读英文没什么压力 xff0c 强烈推荐以下链接进行全面了解 xff1a 官网
  • gtsam:从入门到使用

    文章目录 一 总览二 贝叶斯网络和因子图三 机器人运动建模3 1 使用因子图建模3 2 建立因子图3 3 因子图与变量3 4 GTSAM中的非线性优化3 5 全后验推论 四 机器人定位4 1 一元测量因子4 2 自定义因子4 3 使用自定义
  • 马尔可夫链、隐马尔科夫模型、贝叶斯网络、因子图

    文章目录 一 马尔可夫链以及隐马尔可夫模型1 1 概念1 2 举例说明隐马尔可夫模型 二 贝叶斯网络三 因子图 贝叶斯网络是很多概率模型的基础 xff0c 对于slam研究也是一项必须掌握的数学理论工具 一 马尔可夫链以及隐马尔可夫模型 1
  • 3D打印机DIY之一------Prusa i3的材料清单和总体结构组装

    自己使用铝件和亚克力板组装了一台Prusa i3 3D打印机 xff0c 现在把详细的过程记录下来 总体效果图 xff1a 一 材料清单 元件数量总价2020欧式铝方管 xff1a 4根400mm 3根340mm 1根150mm 1根130
  • 位置式PID与增量式PID的介绍和代码实现

    PID分为位置式PID与增量式PID 一 位置式PID 1 表达式为 xff1a 2 缺点 xff1a 1 xff09 由于全量输出 xff0c 所以每次输出均与过去状态有关 xff0c 计算时要对ek进行累加 xff0c 工作量大 xff
  • 常见蓝牙模块介绍和AT指令

    目录 一 HC 05主从一体蓝牙模块 二 HC 06从机蓝牙模块 三 低功耗BLE蓝牙4 0模块 cc2540或cc2541 四 JDY 10 蓝牙4 0 BLE模块 五 蓝牙模块LAYOUT注意事项 xff1a 常见的蓝牙模块为 xff1
  • PID参数调节总结

    原文链接 xff1a 点击打开链接 经验 xff1a 1 采样频率低 xff08 如500ms xff09 xff0c Kp一般是0 01级别 xff1b 采样频率高 xff08 如1ms xff09 xff0c Kp一般是1级别 2 先只