C 语言中 void* 详解及应用

2023-05-16

void 在英文中作为名词的解释为 “空虚、空间、空隙”,而在 C 语言中,void 被翻译为"无类型",相应的void * 为"无类型指针"

void 似乎只有"注释"和限制程序的作用,当然,这里的"注释"不是为我们人提供注释,而是为编译器提供一种所谓的注释。

void的作用

1.对函数返回的限定,这种情况我们比较常见。

2.对函数参数的限定,这种情况也是比较常见的。

一般我们常见的就是这两种情况:

  1. 当函数不需要返回值值时,必须使用void限定,这就是我们所说的第一种情况。例如:void func(int a,char *b)。
  2. 当函数不允许接受参数时,必须使用void限定,这就是我们所说的第二种情况。例如:int func(void)。

void指针的使用规则

  1. void 指针可以指向任意类型的数据,就是说可以用任意类型的指针对 void 指针对 void 指针赋值。例如:
int *a;
void *p;
p=a;

如果要将 void 指针 p 赋给其他类型的指针,则需要强制类型转换,就本例而言:a=(int )p。在内存的分配中我们可以见到 void 指针使用:内存分配函数 malloc 函数返回的指针就是 void * 型,用户在使用这个指针的时候,要进行强制类型转换,也就是显式说明该指针指向的内存中是存放的什么类型的数据 (int *)malloc(1024) 表示强制规定 malloc 返回的 void* 指针指向的内存中存放的是一个个的 int 型数据

  1. 在 ANSI C 标准中,不允许对 void 指针进行一些算术运算如 p++ 或 p+=1 等,因为既然 void 是无类型,那么每次算术运算我们就不知道该操作几个字节,例如 char 型操作 sizeof(char) 字节,而 int 则要操作 sizeof(int) 字节。而在 GNU 中则允许,因为在默认情况下,GNU 认为 void *char * 一样,既然是确定的,当然可以进行一些算术操作,在这里sizeof(*p)==sizeof(char)

void 几乎只有"注释"和限制程序的作用,因为从来没有人会定义一个 void 变量,让我们试着来定义:

void a;

这行语句编译时会出错,提示**“illegal use of type ‘void’”**。即使 void a 的编译不会出错,它也没有任何实际意义。

众所周知,如果指针 p1 和 p2 的类型相同,那么我们可以直接在 p1 和 p2 间互相赋值;如果 p1 和 p2 指向不同的数据类型,则必须使用强制类型转换运算符把赋值运算符右边的指针类型转换为左边指针的类型。

float *p1;
int *p2;
p1 = p2;
//其中p1 = p2语句会编译出错,
//提示“'=' : cannot convert from 'int *' to 'float *'”,必须改为:
p1 = (float *)p2;

void * 则不同,任何类型的指针都可以直接赋值给它,无需进行强制类型转换。

void *p1;
int *p2;
p1 = p2;

但这并不意味着,**void *** 也可以无需强制类型转换地赋给其它类型的指针。因为"无类型"可以包容"有类型",而"有类型"则不能包容"无类型"。

小心使用 void 指针类型:

按照 ANSI(American National Standards Institute) 标准,不能对 void 指针进行算法操作,即下列操作都是不合法的:

void * pvoid;
pvoid++; //ANSI:错误
pvoid += 1; //ANSI:错误
//ANSI标准之所以这样认定,是因为它坚持:进行算法操作的指针必须是确定知道其指向数据类型大小的。
//例如:
int *pint;
pint++; //ANSI:正确

pint++ 的结果是使其增大 sizeof(int)。
但是 GNU 则不这么认定,它指定 void * 的算法操作与 char * 一致。因此下列语句在 GNU 编译器中皆正确:

pvoid++; //GNU:正确
pvoid += 1; //GNU:正确

pvoid++ 的执行结果是其增大了 1。

在实际的程序设计中,为迎合 ANSI 标准,并提高程序的可移植性,我们可以这样编写实现同样功能的代码:

void * pvoid;
((char *)pvoid)++; //ANSI:错误;GNU:正确
(char *)pvoid += 1; //ANSI:错误;GNU:正确

GNU 和 ANSI 还有一些区别,总体而言,GNU 较 ANSI 更"开放",提供了对更多语法的支持。但是我们在真实设计时,还是应该尽可能地迎合 ANSI 标准。 如果函数的参数可以是任意类型指针,那么应声明其参数为void *

**注:**void 指针可以任意类型的数据,可以在程序中给我们带来一些好处,函数中形为指针类型时,我们可以将其定义为 void 指针,这样函数就可以接受任意类型的指针。如:

典型的如内存操作函数 memcpy 和 memset 的函数原型分别为:

void * memcpy(void *dest, const void *src, size_t len);
void * memset ( void * buffer, int c, size_t num );

这样,任何类型的指针都可以传入 memcpy 和 memset 中,这也真实地体现了内存操作函数的意义,因为它操作的对象仅仅是一片内存,而不论这片内存是什么类型。如果 memcpy 和 memset 的参数类型不是 void *,而是 char *,那才叫真的奇怪了!这样的 memcpy 和 memset 明显不是一个"纯粹的,脱离低级趣味的"函数!void 的出现只是为了一种抽象的需要,如果你正确地理解了面向对象中"抽象基类"的概念,也很容易理解 void 数据类型。正如不能给抽象基类定义一个实例,我们也不能定义一个 void(让我们类比的称 void 为"抽象数据类型")变量。

原文地址:https://www.cnblogs.com/wuyudong/p/c-void-point.html

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C 语言中 void* 详解及应用 的相关文章

随机推荐

  • ssh登录服务器缓慢问题

    问题描述 问题刚开始是由pod启动失败 xff0c 报错unable to ensure pod container exists failed to create container for kubepods burstable pod8
  • UCOSIII学习-任务管理

    UCOSIII学习 任务管理 1 UCOSIII 任务组成2 UCOSIII 默认系统任务3 UCOSIII 任务状态4 任务堆栈1 任务堆栈的创建2 任务堆栈初始化 5 任务控制块1 任务控制块创建2 任务控制块初始化 6 任务就绪表1
  • ubuntu(Linux)配置允许远程登陆

    安装ubuntu后默认不可以以root方式登录系统 xff0c 需要做以下配置 1 使用sudo i 命令可以让用户切换到root用户 xff0c guo用户是安装ubuntu时配置的用户 xff0c 因人而异 xff1b 2 配置root
  • python带下划线的变量和函数

    参考文献 xff1a https blog csdn net AI S YE article details 44685139
  • ADD,COPY,ENTRYPOINT和cmd

    Dockerfile中有关信息 xff1a ADD与COPY区别 add 1 对压缩包进行解压2 可以在后面直接跟文件地址 copy xff1a 把本地的文件copy到容器里面 ENTRYPOINT与CMD区别 1 第一种解释 xff08
  • docker实例操作

    很多东西都是借鉴各位大神的 xff0c 也不知道具体是谁或是哪个链接 xff0c 很抱歉 两者同为目前版本中个人和小团队常用的服务级操作系统 xff0c 在线提供的软件库中可以很方便的安装到很多开源的软件及库 两者都使用bash作为基础sh
  • 三、FreeRTOS任务管理--常用函数

    任务的基本概念 FreeRTOS 的任务可认为是一系列独立任务的集合 每个任务在自己的环境中运行 在任何时刻 xff0c 只有一个任务得到运行 xff0c FreeRTOS 调度器决定运行哪个任务 调度器会不断的启动 停止每一个任务 xff
  • 七、FreeRTOS事件和常用函数接口

    基本概念 事件是一种实现任务间通信的机制 xff0c 主要用于实现多任务间的同步 xff0c 但事件通信只能是事件类型的通信 xff0c 无数据传输 与信号量不同的是 xff0c 它可以实现一对多 xff0c 多对多的同步 即一个任务可以等
  • PX4姿态估计源码分析

    写在前面 今天入坑PX4开始学习PX4代码 xff0c pixhawk硬件是可以支持PX4 ardupilot两套固件 我用的是1 6 0rc1版本代码 代码位置 xff1a Firmware1 6 0rc1 src modules att
  • PX4位置估计源码分析

    写在前面 源码版本 xff1a 1 6 0rc1 源码位置 xff1a Firmware 1 6 0rc1 src modules position estimator inav position estimator inav main c
  • ROS入门笔记(二):ROS安装与环境配置及卸载(重点)

    ROS入门笔记 xff08 二 xff09 xff1a ROS安装与环境配置及卸载 xff08 重点 xff09 文章目录 1 ROS安装步骤1 1 ROS版本1 2 确定Ubuntu版本号1 3 安装ROS1 3 1 Ubuntu初始环境
  • windows安装Java环境及Flightplot分析PX4飞行日志

    写在前面 用Flightplot分析PX4飞行日志 xff0c 不管是windows还是Ubuntu都需要安装对应的Java环境 xff08 我用的是win10家庭版 xff09 1 下载安装java环境 xff1a a 下载 点击地址进行
  • PX4_ECL_EKF代码分析1

    写在前面 源码版本 xff1a 1 6 0rc1 源码位置1 xff1a Firmware 1 6 0rc1 src modules ekf2 main cpp 源码位置2 xff1a Firmware 1 6 0rc1 src lib e
  • PX4_ECL_EKF代码分析2

    写在前面 源码版本 xff1a 1 6 0rc1 源码位置1 xff1a Firmware 1 6 0rc1 src modules ekf2 main cpp 源码位置2 xff1a Firmware 1 6 0rc1 src lib e
  • 基于RflySim平台的mahony(含磁罗盘)互补滤波在pixhawk仿真及实物实验(带实验数据)

    写在前面 本案例实验采用RflySim平台 xff0c 该平台可以高效快速编写代码 xff0c 使用simulink模型搭建 xff0c 可以见代码直接生成对应的C代码 xff0c 并一键将代码烧录Pixhawk中 xff0c 是一种快速开
  • ROS学习笔记(1)——创作工作空间/安装usb_cam来调用摄像头

    写在前面 ubuntu版本 xff1a 20 04 ros版本 xff1a noetic 工作空间 工作空间 workspace 是一个存放工程开发相关的文件夹 xff0c 一般包含 xff1a src xff1a 代码空间 xff0c 存
  • ROS学习笔记(2)——roslaunch turtle_tf turtle_tf_demo.launch报错问题(Ubuntu20.04python2与python3版本切换)

    写在前面 Ubuntu版本 xff1a 20 04 ROS版本 xff1a noetic 解决运行roslaunch turtle tf turtle tf demo launch文件后报错问题 问题说明 xff1a 此问题最终是由于pyt
  • ROS学习笔记(3)——通过脚本控制rviz中创建的机器人运动

    写在前面 需求 xff1a rviz中创建的机器人模型 xff0c 通过运行脚本方式控制其运动 ros版本 kinetic noetic 两个版本亲测都可以 整体效果 思路 机器人描述文件xacro xff0c 通过joint 关节 来控制
  • ROS学习笔记(4)——RVIZ中显示双足机器人行走

    写在前面 ros版本 kinetic noetic 亲测可行 结合前面笔记 3 需求 xff1a 在rviz中实现双足机器人行走 效果展示 实现方式 rviz中机器人运动是通过控制关节运动的角度 xff0c 来改变机器人在rviz中的显示
  • C 语言中 void* 详解及应用

    void 在英文中作为名词的解释为 空虚 空间 空隙 xff0c 而在 C 语言中 xff0c void 被翻译为 34 无类型 34 xff0c 相应的void 为 34 无类型指针 34 void 似乎只有 34 注释 34 和限制程序