ROS开机自启设置

2023-05-16

使用robot_upstart功能包即可实现节点的开机自启

安装功能包

安装robot_upstart功能包,本文使用的Ubuntu20对应的ROS版本为noetic

sudo apt-get install ros-noetic-robot-upstart

如果使用的是Ubuntu18,则还需要安装setpriv

sudo apt-get install setpriv

自启动设置

设置自启,以下命令即可设置<package_name>功能包下的<launch_file>.launch文件开机自启

rosrun robot_upstart install <package_name>/launch/<launch_file>.launch
# 启动任务,只需要启动功能包的名字<package_name>即可
sudo systemctl daemon-reload && sudo systemctl start <package_name>
sudo service <package_name> start

停止任务

sudo service <package_name> stop

卸载自启动任务

sudo service <package_name> stop
rosrun robot_upstart uninstall <package_name>

如果对launch文件进行了更改,则需要重新设置开机自启

# 卸载自启动任务
sudo service <package_name> stop
rosrun robot_upstart uninstall <package_name>
# 重新设置自启动任务
rosrun robot_upstart install <package_name>/launch/<launch_file>.launch
sudo systemctl daemon-reload && sudo systemctl start <package_name>
sudo service <package_name> start
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

ROS开机自启设置 的相关文章

  • 机器学习 | 使用k-近邻算法实现手写识别系统

    KNN概述 k 近邻算法就是通过计算不同特征值之间的距离来进行分类的算法 假设我们现在有一个样本集 xff0c 每个样本都有几个特征用来描述这个样本 xff0c 以及一个它所属分类的标签 当我们拿到一个没有标签的样本时 xff0c 该如何判
  • Windows下如何查看一个process内有哪些thread

    从https docs microsoft com en us sysinternals downloads pslist下载PsTools xff0c 解压后找到pslist exe并移动到C盘任一目录下 xff0c 使用说明都在Psto
  • 机器人路径规划之动态窗口法

    动态窗口法 Dynamic Window Approach 概述 DWA是一种基于速度的局部规划器 xff0c 可计算达到目标所需的机器人的最佳无碰撞速度 程序实现 DWA算法主要分三步 xff1a 计算动态窗口计算最优 v
  • cso(布谷鸟)算法优化神经网络参数

    之前写了一篇pso工程上使用方法 xff0c 这一篇使用布谷鸟算法 xff0c 相关的原理也比较多的介绍了 目前实验结果还是pso快一点 一 布谷鸟算法介绍 布谷鸟搜索算法 xff0c 是 由剑 桥 大 学YANG等在文献 中提出的一种群智
  • 多线程之线程安全(Thread Safety)

    什么是线程安全 Thread Safety xff1f 怎样才能做到线程安全 xff1f 线程安全 线程安全指某个函数 函数库在多线程环境中被调用时 xff0c 能够正确地处理多个线程之间的共享变量 xff0c 使程序功能正确完成 数据类型
  • 多线程之简易注册验证程序

    问题描述 使用VC2010或以上版本编写一个多线程注册验证程序 xff0c 要求 xff1a 通过对话框输入若干人的学号和姓名 xff0c 并存入列表中作为注册记录 用户输入一个学号 xff0c 程序能通过多线程的方式与注册记录比对来验证其
  • 多线程之基于积分法与欧拉恒等式法的圆周率计算及OMP优化

    文章目录 一 问题描述二 积分法算法推导编程实现OMP优化 三 欧拉恒等式算法推导编程实现前期准备加法减法乘法除法 算法实现 OMP优化 四 总结积分法与欧拉恒等式法的对比OMP实现方式的对比 一 问题描述 分别采用积分法和欧拉恒等式计算
  • 语音信号处理 | 基于Hilbert-Huang变换的基音检测方法

    HHT原理 Hiibert Huang变换是由Huang等人于1998年提出来的一种信号分析方法 xff0c 它主要由两个部分组成 经验模型分解 Empirical Mode Decomposition EMD 和希尔伯特变换 xff08
  • 机器学习 | 使用TensorFlow搭建神经网络实现鸢尾花分类

    鸢尾花分类问题是机器学习领域一个非常经典的问题 xff0c 本文将利用神经网络来实现鸢尾花分类 实验环境 xff1a Windows10 TensorFlow2 0 Spyder 参考资料 xff1a 人工智能实践 xff1a Tensor
  • 语音信号处理 | 基于卡尔曼滤波的语音增强算法

    文章目录 1 概述2 卡尔曼滤波原理被估计的信号离散卡尔曼滤波算法参数选择 3 基于卡尔曼滤波的语音增强算法语音模型分析参数确定 4 程序实现语音数据的导入 加噪与分帧卡尔曼滤波器参数初始化卡尔曼滤波过程结果可视化 5 运行结果与结果分析运
  • UDP实时图像传输进阶篇——1080P视频传输

    在UDP实时图像传输一文中 xff0c 介绍了如何使用UDP来实现图像的实时传输 xff0c 并使用C 进行了发送端和接收端的搭建 但是文中的方法是对整张图片进行JPEG压缩 xff0c 并通过UDP一次性地发送到接收端 xff0c 由于一
  • 机器人路径规划之Dijkstra算法

    在机器人路径规划之动态窗口法文中 xff0c 介绍了一种局部路径规划方法 动态窗口法 xff0c 本文将介绍一种全局路径规划方法 Dijkstra算法 狄克斯特拉算法 Dijkstra算法是从一个顶点到其余各顶点的最短路径算法 xff0c
  • 语音信号处理 | 使用短时能量和谱质心特征进行端点检测

    文章目录 概述原理及MATLAB实现基本流程特征提取短时能量谱质心 阈值估计和阈值化处理提取语音片段 MATLAB2020a中的VAD函数参考 概述 在复杂的应用环境下 xff0c 从音频中分割出语音信号和和非语音信号 xff0c 是一个很
  • 语音信号处理 | 傅里叶变换、短时傅里叶变换、小波变换、希尔伯特变换、希尔伯特黄变换

    在信号处理领域 xff0c 存在诸多变换 xff0c 比如标题中的五个变换 本文将对这五个变换进行介绍和比较 在开始之前 xff0c 我们需要先理清什么是平稳信号 xff0c 什么是非平稳信号 我们知道 xff0c 自然界中几乎所有信号都是
  • clang-format格式文件。可以直接复制引用

    Language Cpp BasedOnStyle LLVM AccessModifierOffset 2 AlignAfterOpenBracket Align AlignConsecutiveMacros false AlignCons
  • 多线程之多核线上考试试题瞎解

    匆忙的大三早已结束 xff0c 时隔两月 xff0c 再以此文祭奠我炸掉的多核考试 这次考试真正能写出来的也就两道题 xff0c 以下简单地记录一下 第二题 随机产生2个10 10的浮点数矩阵A和B xff0c 先将矩阵A和B作转置 xff
  • 视觉SLAM | RealsenseD435i相机标定

    在运行VINS MONO VINS Fusion等SLAM方案的时候 xff0c 需要很准确的相机参数 xff0c 否则很容易漂移 本文是RealsenseD435i相机标定过程的记录 xff0c 标定主要有三个步骤 IMU标定相机标定IM
  • 视觉SLAM | 使用RealsenseD435i运行VINS-Fusion

    使用RealsenseD435i运行VINS Fusion VINS Fusion是基于双目的视觉惯导方案 xff0c 不太符合我目前的需求 xff0c 但这是我使用的第一个视觉SLAM方案 xff0c 接下来还是简单记录下 运行环境 硬件
  • 视觉SLAM | 在ROS上运行ORB-SLAM2

    本文直接使用的github上的orb slam 2 ros实现在ROS上运行ORB SLAM2 xff0c 这个ros包能够得到相机的位姿以及稀疏点云 xff0c 而且删掉了对Pangolin的依赖 xff0c 进行可视化时要用RViz 运
  • ROS报错记录及解决方法(不定期更新)

    ROS下载缓慢 如果是在国内安装 xff0c 建议在安装之前先配置国内的镜像源 xff0c 在软件和更新进行更改即可 参考 xff1a Ubuntu18 04下安装ROS 由于没有公钥 xff0c 无法验证下列签名 安装ROS时报错 xff

随机推荐

  • ROS与STM32通信

    ROS与STM32是用串口进行通信的 xff0c 主要有两种方式 xff0c 一是将STM32作为一个节点 xff0c 二是制作一个上位机节点 负责与STM32进行串口通信 xff0e 第一种方式需要专门的硬件 xff0c 所以我选择第二种
  • 使用VScode搭建ROS开发环境

    俗话说 xff02 工欲善其事必先利其器 xff02 xff0c 之前在Ubuntu上运行的ROS项目都是用vim或者gedit编写和修改代码 xff0c 然后在终端编译运行 xff0c 很不方便 xff0c 函数跳转查看都没办法实现 所以
  • TCP实时图像传输

    之前尝试过使用UDP进行图像传输 xff0c 而UDP协议要求包小于64K xff0c 对于较大的图像 xff0c 需要使用分片压缩的方式进行传输 xff0c 操作较复杂 xff0c 同时不能保证图片的每一部分都能够正确传输 详见 xff1
  • STM32部分BUG及解决方法记录(不定期更新)

    1 编译使用CubeMX生成的代码时报错 Error L6218E Undefined symbol HAL PWREx DisableUCPDDeadBattery referred from stm32g4xx hal msp o 解决
  • 语音信号处理 | Python实现端点检测

    由于项目需要 xff0c 我要使用Python对语音进行端点检测 xff0c 在之前的博客使用短时能量和谱质心特征进行端点检测中 xff0c 我使用MATLAB实现了一个语音端点检测算法 xff0c 下面我将使用Python重新实现这个这个
  • 进程,线程,应用程序。概念理解

    简单的说 xff0c 进程 可以承载一组相关的 NET 程序集 xff0c 而 应用程序域 xff08 简称AppDomain xff09 是对该进程的逻辑细分 一个应用程序域进一步被细分成多个 上下文边界 xff0c 这些边界用来分组目的
  • 搭建STM32开发环境

    安装keil 点击这里下载安装最新版的keil 破解 以管理员身份运行keil xff0c 打开File gt License Management 复制CID xff0c 如下 xff1a 运行keygen2032 exe xff0c 修
  • 路径规划 | 图搜索算法:DFS、BFS、GBFS、Dijkstra、A*

    地图数据常常可以用图 Graph 这类数据结构表示 xff0c 那么在图结构中常用的搜索算法也可以应用到路径规划中 本文将从图搜索算法的基本流程入手 xff0c 层层递进地介绍几种图搜索算法 首先是两种针对无权图的基本图搜索算法 xff1a
  • 移动机器人中地图的表示

    在学习算法之前 xff0c 首先要做的是理解数据 xff0c 所以本专栏在开始介绍运动规划算法前 xff0c 首先介绍一下地图的数据形式 地图有很多种表示形式 xff0c 在移动机器人中比较常用的是尺度地图 拓扑地图 语义地图 尺度地图 x
  • 路径规划 | 随机采样算法:PRM、RRT、RRT-Connect、RRT*

    基于图搜索的路径规划算法主要用于低维度空间上的路径规划问题 xff0c 它在这类问题中往往具有较好的完备性 xff0c 但是需要对环境进行完整的建模工作 xff0c 在高维度空间中往往会出现维数灾难 为了解决这些问题 xff0c 本文将介绍
  • ROS多机通信

    配置主从机IP地址 分别使用sudo vi etc hosts在主从机的 etc hosts文件中添加下面的代码 xff0c 其中pi是主机的用户名 xff0c esdc是从机的用户名 ip要相应的进行更改 xff0c 可以使用ifconf
  • 路径规划 | 图搜索算法:JPS

    JPS算法全称为Jump Point Search xff0c 也就是跳点算法 xff0c 可以视为A 算法的一种改进算法 xff0c 它保留了A 算法的主体框架 xff0c 区别在于 xff1a A 算法是将当前节点的所有未访问邻居节点加
  • 路径规划 | 随机采样算法:Informed-RRT*

    在文章路径规划 随机采样算法 xff1a PRM RRT RRT Connect RRT 中 xff0c 介绍了具备渐近最优性的RRT 算法 随着采样点数的增多 xff0c RRT 算法的规划结果会逐渐收敛到最优 但是可以观察到 xff0c
  • Ubuntu20安装ROS noetic

    Ubuntu20对应的ROS版本为ROS noetic xff0c 安装过程如下 xff1a 1 打开Software amp Updates xff0c 勾选main universe restricted multiverse这四项 2
  • 使用VSCode进行远程C++开发

    本文以Windows连接Ubuntu子系统 WSL 为例来介绍VSCode的远程开发流程 首先在VSCode中安装Remote WSL插件 xff0c 重启VSCode xff0c 如下图所示 xff0c 连接WSL 如果是其他远程 xff
  • ROS话题发布和订阅节点的C++&Python实现

    本文将分别使用C 43 43 和Python来实现话题发布者和订阅者 xff0c 首先创建一个功能包 xff0c 命名为topic pub sub xff0c 添加roscpp xff0c rospy等依赖项 C 43 43 实现 创建话题
  • 只要活着,我愿意一辈子都做程序员

    前不久 xff0c 我看过一个有意思的帖子 xff0c 标题是 35岁是程序员的终点 作者列举了35岁的年龄已经不适合继续做程序员的种种原因 xff0c 试图说服在这个年龄段的程序员做出改变 xff0c 初一看 xff0c 我自己也觉得很有
  • 机器人自主导航 | ROS与移动底盘通信

    本实验是实现机器人自主导航的重要步骤 xff0c 对于轮式机器人 xff0c 可以通过在底盘加装轮式里程计的方式来获得机器人的速度数据 xff0c 这些数据可以用来辅助机器人实现自主定位 xff0c 同时机器人还需要将控制指令发送给移动底盘
  • 使用C++调用Python模块(Linux)

    使用Python调用C 43 43 库见 xff1a 我的另一篇博客 工程配置 本文使用的项目构建工具为CMake xff0c 使用FindPython工具在CMake工程中找到Python库 xff0c 注意CMake最低版本为3 12
  • ROS开机自启设置

    使用robot upstart功能包即可实现节点的开机自启 安装功能包 安装robot upstart功能包 xff0c 本文使用的Ubuntu20对应的ROS版本为noetic span class token function sudo