几道经典的嵌入式C语言笔试题

2023-05-16

      C语言测试是招聘嵌入式系统程序员过程中必须而且有效的方法。这些年,我既参加也组织了许多这种测试,在这过程中我意识到这些测试能为带面试者和被面试者提供许多有用信息,此外,撇开面试的压力不谈,这种测试也是相当有趣的。

      从被面试者的角度来讲,你能了解许多关于出题者或监考者的情况。这个测试只是出题者为显示其对ANSI标准细节的知识而不是技术技巧而设计吗?这个愚蠢的问题吗?如要你答出某个字符的ASCII值。这些问题着重考察你的系统调用和内存分配策略方面的能力吗?这标志着出题者也许花时间在微机上而不上在嵌入式系统上。如果上述任何问题的答案是“是”的话,那么我知道我得认真考虑我是否应该去做这份工作。

      从面试者的角度来讲,一个测试也许能从多方面揭示应试者的素质:最基本的,你能了解应试者C语言的水平。不管怎么样,看一下这人如何回答他不会的问题也是满有趣。应试者是以好的直觉做出明智的选择,还是只是瞎蒙呢?当应试者在某个问题上卡住时是找借口呢,还是表现出对问题的真正的好奇心,把这看成学习的机会呢?我发现这些信息与他们的测试成绩一样有用。

      有了这些想法,我决定出一些真正针对嵌入式系统的考题,希望这些令人头痛的考题能给正在找工作的人一点帮住。这些问题都是我这些年实际碰到的。其中有些题很难,但它们应该都能给你一点启迪。这个测试适于不同水平的应试者,大多数初级水平的应试者的成绩会很差,经验丰富的程序员应该有很好的成绩。为了让你能自己决定某些问题的偏好,每个问题没有分配分数,如果选择这些考题为你所用,请自行按你的意思分配分数。

 

预处理器(Preprocessor)

1 . 用预处理指令#define 声明一个常数,用以表明1年中有多少秒(忽略闰年问题)

#define SECONDS_PER_YEAR (60 * 60 * 24 * 365)UL

我在这想看到几件事情:

?; #define 语法的基本知识(例如:不能以分号结束,括号的使用,等等)

?; 懂得预处理器将为你计算常数表达式的值,因此,直接写出你是如何计算一年中有多少秒而不是计算出实际的值,是更清晰而没有代价的。

?; 意识到这个表达式将使一个16位机的整型数溢出-因此要用到长整型符号L,告诉编译器这个常数是的长整型数。

?; 如果你在你的表达式中用到UL(表示无符号长整型),那么你有了一个好的起点。记住,第一印象很重要。

2 . 写一个“标准”宏MIN ,这个宏输入两个参数并返回较小的一个。

#define MIN(A,B) ((A) <= (B) ? (A) : (B))

这个测试是为下面的目的而设的:

?; 标识#define在宏中应用的基本知识。这是很重要的,因为直到嵌入(inline)操作符变为标准C的一部分,宏是方便产生嵌入代码的唯一方法,对于嵌入式系统来说,为了能达到要求的性能,嵌入代码经常是必须的方法。

?; 三重条件操作符的知识。这个操作符存在C语言中的原因是它使得编译器能产生比if-then-else更优化的代码,了解这个用法是很重要的。

?; 懂得在宏中小心地把参数用括号括起来

?; 我也用这个问题开始讨论宏的副作用,例如:当你写下面的代码时会发生什么事?

least = MIN(*p++, b);

3. 预处理器标识#error的目的是什么?

如果你不知道答案,请看参考文献1。这问题对区分一个正常的伙计和一个书呆子是很有用的。只有书呆子才会读C语言课本的附录去找出象这种问题的答案。当然如果你不是在找一个书呆子,那么应试者最好希望自己不要知道答案。

 

死循环(Infinite loops)

4. 嵌入式系统中经常要用到无限循环,你怎么样用C编写死循环呢?

这个问题用几个解决方案。我首选的方案是:

while(1)

{

?}

一些程序员更喜欢如下方案:

for(;;)

{

?}

这个实现方式让我为难,因为这个语法没有确切表达到底怎么回事。如果一个应试者给出这个作为方案,我将用这个作为一个机会去探究他们这样做的基本原理。如果他们的基本答案是:“我被教着这样做,但从没有想到过为什么。”这会给我留下一个坏印象。

第三个方案是用 goto

Loop:

...

goto Loop;

应试者如给出上面的方案,这说明或者他是一个汇编语言程序员(这也许是好事)或者他是一个想进入新领域的BASIC/FORTRAN程序员。

 

数据声明(Data declarations)

5. 用变量a给出下面的定义

a) 一个整型数(An integer)

b)一个指向整型数的指针( A pointer to an integer)

c)一个指向指针的的指针,它指向的指针是指向一个整型数( A pointer to a pointer to an intege)r

d)一个有10个整型数的数组( An array of 10 integers)

e) 一个有10个指针的数组,该指针是指向一个整型数的。(An array of 10 pointers to integers)

f) 一个指向有10个整型数数组的指针( A pointer to an array of 10 integers)

g) 一个指向函数的指针,该函数有一个整型参数并返回一个整型数(A pointer to a function that takes an integer as an argument and returns an integer)

h)一个有10个指针的数组,该指针指向一个函数,该函数有一个整型参数并返回一个整型数( An array of ten pointers to functions that take an integer argument and return an integer )

答案是:

a) int a; // An integer

b) int *a; // A pointer to an integer

c) int **a; // A pointer to a pointer to an integer

d) int a[10]; // An array of 10 integers

e) int *a[10]; // An array of 10 pointers to integers

f) int (*a)[10]; // A pointer to an array of 10 integers

g) int (*a)(int); // A pointer to a function a that takes an integer argument and returns an integer

h) int (*a[10])(int); // An array of 10 pointers to functions that take an integer argument and return an integer

人们经常声称这里有几个问题是那种要翻一下书才能回答的问题,我同意这种说法。当我写这篇文章时,为了确定语法的正确性,我的确查了一下书。但是当我被面试的时候,我期望被问到这个问题(或者相近的问题)。因为在被面试的这段时间里,我确定我知道这个问题的答案。应试者如果不知道所有的答案(或至少大部分答案),那么也就没有为这次面试做准备,如果该面试者没有为这次面试做准备,那么他又能为什么出准备呢?

 

Static

6. 关键字static的作用是什么?

这个简单的问题很少有人能回答完全。在C语言中,关键字static有三个明显的作用:

?; 在函数体,一个被声明为静态的变量在这一函数被调用过程中维持其值不变。

?; 在模块内(但在函数体外),一个被声明为静态的变量可以被模块内所用函数访问,但不能被模块外其它函数访问。它是一个本地的全局变量。

?; 在模块内,一个被声明为静态的函数只可被这一模块内的其它函数调用。那就是,这个函数被限制在声明它的模块的本地范围内使用。

大多数应试者能正确回答第一部分,一部分能正确回答第二部分,同是很少的人能懂得第三部分。这是一个应试者的严重的缺点,因为他显然不懂得本地化数据和代码范围的好处和重要性。

 

Const

7.关键字const有什么含意?

我只要一听到被面试者说:“const意味着常数”,我就知道我正在和一个业余者打交道。去年Dan Saks已经在他的文章里完全概括了const的所有用法,因此ESP(译者:Embedded Systems Programming)的每一位读者应该非常熟悉const能做什么和不能做什么.如果你从没有读到那篇文章,只要能说出const意味着“只读”就可以了。尽管这个答案不是完全的答案,但我接受它作为一个正确的答案。(如果你想知道更详细的答案,仔细读一下Saks的文章吧。)

如果应试者能正确回答这个问题,我将问他一个附加的问题:

下面的声明都是什么意思?

const int a;

int const a;

const int *a;

int * const a;

int const * a const;

/******/ 前两个的作用是一样,a是一个常整型数。第三个意味着a是一个指向常整型数的指针(也就是,整型数是不可修改的,但指针可以)。第四个意思a是一个指向整型数的常指针(也就是说,指针指向的整型数是可以修改的,但指针是不可修改的)。最后一个意味着a

是一个指向常整型数的常指针(也就是说,指针指向的整型数是不可修改的,同时指针也是不可修改的)。如果应试者能正确回答这些问题,那么他就给我留下了一个好印象。顺带提一句,也许你可能会问,即使不用关键字const,也还是能很容易写出功能正确的程序,那么我为什么还要如此看重关键字const呢?我也如下的几下理由:

?; 关键字const的作用是为给读你代码的人传达非常有用的信息,实际上,声明一个参数为常量是为了告诉了用户这个参数的应用目的。如果你曾花很多时间清理其它人留下的垃圾,你就会很快学会感谢这点多余的信息。(当然,懂得用const的程序员很少会

留下的垃圾让别人来清理的。)

?; 通过给优化器一些附加的信息,使用关键字const也许能产生更紧凑的代码。

?; 合理地使用关键字const可以使编译器很自然地保护那些不希望被改变的参数,防止其被无意的代码修改。简而言之,这样可以减少bug的出现。

 

Volatile

8. 关键字volatile有什么含意?并给出三个不同的例子。

一个定义为volatile的变量是说这变量可能会被意想不到地改变,这样,编译器就不会去假设这个变量的值了。精确地说就是,优化器在用到这个变量时必须每次都小心地重新读取这个变量的值,而不是使用保存在寄存器里的备份。下面是volatile变量的几个例子:

?; 并行设备的硬件寄存器(如:状态寄存器)

?; 一个中断服务子程序中会访问到的非自动变量(Non-automatic variables)

?; 多线程应用中被几个任务共享的变量

回答不出这个问题的人是不会被雇佣的。我认为这是区分C程序员和嵌入式系统程序员的最基本的问题。搞嵌入式的家伙们经常同硬件、中断、RTOS等等打交道,所有这些都要求用到volatile变量。不懂得volatile的内容将会带来灾难。

假设被面试者正确地回答了这是问题(嗯,怀疑是否会是这样),我将稍微深究一下,看一下这家伙是不是直正懂得volatile完全的重要性。

?; 一个参数既可以是const还可以是volatile吗?解释为什么。

?; 一个指针可以是volatile 吗?解释为什么。

?; 下面的函数有什么错误:

int square(volatile int *ptr)

{

return *ptr * *ptr;

}

下面是答案:

?; 是的。一个例子是只读的状态寄存器。它是volatile因为它可能被意想不到地改变。它是const因为程序不应该试图去修改它。

?; 是的。尽管这并不很常见。一个例子是当一个中服务子程序修该一个指向一个buffer的指针时。

?; 这段代码有点变态。这段代码的目的是用来返指针*ptr指向值的平方,但是,由于*ptr指向一个volatile型参数,编译器将产生类似下面的代码:

int square(volatile int *ptr)

{

int a,b;

a = *ptr;

b = *ptr;

return a * b;

}

由于*ptr的值可能被意想不到地该变,因此a和b可能是不同的。结果,这段代码可能返不是你所期望的平方值!正确的代码如下:

long square(volatile int *ptr)

{

int a;

a = *ptr;

return a * a;

}

 

位操作(Bit manipulation)

9. 嵌入式系统总是要用户对变量或寄存器进行位操作。给定一个整型变量a,写两段代码,第一个设置a的bit 3,第二个清除a 的bit 3。在以上两个操作中,要保持其它位不变。

对这个问题有三种基本的反应:

?; 不知道如何下手。该被面者从没做过任何嵌入式系统的工作。

?; 用bit fields。Bit fields是被扔到C语言死角的东西,它保证你的代码在不同

编译器之间是不可移植的,同时也保证了的你的代码是不可重用的。我最近不幸看到Infineon为其较复杂的通信芯片写的驱动程序,它用到了bit fields因此完全对我无用,因为我的编译器用其它的方式来实现bit fields的。从道德讲:永远不要让一个非嵌入式的家伙粘实际硬件的边。

?; 用 #defines 和 bit masks 操作。这是一个有极高可移植性的方法,是应该被用到的方法。

最佳的解决方案如下:

#define BIT3 (0x1 << 3)

static int a;

void set_bit3(void) {

a |= BIT3;

}

void clear_bit3(void) {

a &= ~BIT3;

}

一些人喜欢为设置和清除值而定义一个掩码同时定义一些说明常数,这也是可以接受的。

我希望看到几个要点:说明常数、|=和&=~操作。

 

访问固定的内存位置(Accessing fixed memory locations)

10. 嵌入式系统经常具有要求程序员去访问某特定的内存位置的特点。在某工程中,要求设置一绝对地址为0x67a9的整型变量的值为0xaa66。编译器是一个纯粹的ANSI编译器。写代码去完成这一任务。

这一问题测试你是否知道为了访问一绝对地址把一个整型数强制转换(typecast)为一指针是合法的。这一问题的实现方式随着个人风格不同而不同。典型的类似代码如下:

int *ptr;

ptr = (int *)0x67a9;

*ptr = 0xaa55;

A more obscure approach is:

一个较晦涩的方法是:

*(int * const)(0x67a9) = 0xaa55;

即使你的品味更接近第二种方案,但我建议你在面试时使用第一种方案。

 

中断(Interrupts)

11. 中断是嵌入式系统中重要的组成部分,这导致了很多编译开发商提供一种扩展—让标准C支持中断。具代表事实是,产生了一个新的关键字__interrupt。下面的代码就使用了__interrupt关键字去定义了一个中断服务子程序(ISR),请评论一下这段代码的。

__interrupt double compute_area (double radius)

{

double area = PI * radius * radius;

printf("/nArea = %f", area);

return area;

}

这个函数有太多的错误了,以至让人不知从何说起了:

?; ISR 不能返回一个值。如果你不懂这个,那么你不会被雇用的。

?; ISR 不能传递参数。如果你没有看到这一点,你被雇用的机会等同第一项。

?; 在许多的处理器/编译器中,浮点一般都是不可重入的。有些处理器/编译器需要让额处的寄存器入栈,有些处理器/编译器就是不允许在ISR中做浮点运算。此外,ISR应该是短而有效率的,在ISR中做浮点运算是不明智的。

?; 与第三点一脉相承,printf()经常有重入和性能上的问题。如果你丢掉了第三和第四点,我不会太为难你的。不用说,如果你能得到后两点,那么你的被雇用前景越来越光明了。

*****

代码例子(Code examples)

12 . 下面的代码输出是什么,为什么?

void foo(void)

{

unsigned int a = 6;

int b = -20;

(a+b > 6) ? puts("> 6") : puts("<= 6");

}

这个问题测试你是否懂得C语言中的整数自动转换原则,我发现有些开发者懂得极少这些东西。不管如何,这无符号整型问题的答案是输出是 ”>6”。原因是当表达式中存在有符号类型和无符号类型时所有的操作数都自动转换为无符号类型。 因此-20变成了一个非常大的正整数,所以该表达式计算出的结果大于6。这一点对于应当频繁用到无符号数据类型的嵌入式系统来说是丰常重要的。如果你答错了这个问题,你也就到了得不到这份工作的边缘。

 

13. 评价下面的代码片断:

unsigned int zero = 0;

unsigned int compzero = 0xFFFF;

/*1's complement of zero */

对于一个int型不是16位的处理器为说,上面的代码是不正确的。应编写如下:

unsigned int compzero = ~0;

这一问题真正能揭露出应试者是否懂得处理器字长的重要性。在我的经验里,好的嵌入式程序员非常准确地明白硬件的细节和它的局限,然而PC机程序往往把硬件作为一个无法避免的烦恼。到了这个阶段,应试者或者完全垂头丧气了或者信心满满志在必得。如果显然应试者不是很好,那么这个测试就在这里结束了。但如果显然应试者做得不错,那么我就扔出下面的追加问题,这些问题是比较难的,我想仅仅非常优秀的应试者能做得不错。提出这些问题,我希望更多看到应试者应付问题的方法,而不是答案。不管如何,你就当是这个娱乐吧

动态内存分配(Dynamic memory allocation)

14. 尽管不像非嵌入式计算机那么常见,嵌入式系统还是有从堆(heap)中动态分配内存的过程的。那么嵌入式系统中,动态分配内存可能发生的问题是什么?这里,我期望应试者能提到内存碎片,碎片收集的问题,变量的持行时间等等。这个主题已经在ESP杂志中被广泛地讨论过了(主要是 P.J. Plauger, 他的解释远远超过我这里能提到的任何解释),所有回过头看一下这些杂志吧!让应试者进入一种虚假的安全感觉后,我拿出这么一个小节目:

下面的代码片段的输出是什么,为什么?

char *ptr;

if ((ptr = (char *)malloc(0)) ==

NULL)

else

puts("Got a null pointer");

puts("Got a valid pointer");

这是一个有趣的问题。最近在我的一个同事不经意把0值传给了函数malloc,得到了一个合法的指针之后,我才想到这个问题。这就是上面的代码,该代码的输出是“Got a valid pointer”。我用这个来开始讨论这样的一问题,看看被面试者是否想到库例程这样做是正确。得到正确的答案固然重要,但解决问题的方法和你做决定的基本原理更重要些。

 

Typedef

15 Typedef 在C语言中频繁用以声明一个已经存在的数据类型的同义字。也可以用预处理器做类似的事。例如,思考一下下面的例子:

#define dPS struct s *

typedef struct s * tPS;

以上两种情况的意图都是要定义dPS 和 tPS 作为一个指向结构s指针。哪种方法更好呢?(如果有的话)为什么?

这是一个非常微妙的问题,任何人答对这个问题(正当的原因)是应当被恭喜的。答案是:typedef更好。

思考下面的例子:

dPS p1,p2;

tPS p3,p4;

第一个扩展为

struct s * p1, p2;

.

上面的代码定义p1为一个指向结构的指,p2为一个实际的结构,这也许不是你想要的。第二个例子正确地定义了p3 和p4 两个指针。

 

晦涩的语法

16 . C语言同意一些令人震惊的结构,下面的结构是合法的吗,如果是它做些什么?

int a = 5, b = 7, c;

c = a+++b;

这个问题将做为这个测验的一个愉快的结尾。不管你相不相信,上面的例子是完全合乎语法的。问题是编译器如何处理它?水平不高的编译作者实际上会争论这个问题,根据最处理原则,编译器应当能处理尽可能所有合法的用法。因此,上面的代码被处理成:

c = a++ + b;

因此, 这段代码持行后a = 6, b = 7, c = 12。

如果你知道答案,或猜出正确答案,做得好。如果你不知道答案,我也不把这个当作问题。我发现这个问题的最大好处是这是一个关于代码编写风格,代码的可读性,代码的可修改性的好的话题。

 

好了,伙计们,你现在已经做完所有的测试了。这就是我出的C语言测试题,我怀着愉快的心情写完它,希望你以同样的心情读完它。如果是认为这是一个好的测试,那么尽量都用到你的找工作的过程中去吧。天知道也许过个一两年,我就不做现在的工作,也需要找一个。

Nigel Jones 是一个顾问,现在住在Maryland,当他不在水下时,你能在多个范围的嵌入项目中找到他。 他很高兴能收到读者的来信,他的email地址是: NAJones@compuserve.com 。

 

References

?; Jones, Nigel, "In Praise of the #error directive," Embedded SystemsProgramming, September 1999, p. 114.

?; Jones, Nigel, " Efficient C Code for Eight-bit MCUs ," Embedded Systems Programming, November 1998, p. 66.

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

几道经典的嵌入式C语言笔试题 的相关文章

  • 无需修改bios即可让任意主板实现NVME启动

    使用Clover四叶草引导加载NVMe驱动 除了对BIOS的硬改之外 xff0c 还有一种更安全的软件方案 xff1a 使用Clover四叶草引导加载NVMe驱动 Clover是著名的黑苹果引导软件 xff0c 这里借用它来实现对预引导 x
  • 如何将PX4 User Guide导出为PDF

    PX4 Autopilot User Guide PDF导出 如何将PX4 User Guide导出为PDF1 工具安装安装nodejs安装ebook conver安装svgexport安装gitbook 2 输出PX4 Guide文档下载
  • CentOS7 yum安装docker失败的看过来

    背景 在百度上搜到一些前辈关于安装docker教程 xff0c 例如 xff1a 点击打开链接 但都报出找不到源的信息 xff0c 估计导致该情况往往是国内使用外国源被和谐的原因吧 解决 1 使用阿里云的yum源 cd etc yum re
  • 持续交付(CD)与持续集成(CI)

    测试基础设施是指支持自动化测试运行 测试开发 测试管理以及与研发环境集成的综合性平台 敏捷测试离不开稳定 高效 准确的基础设施 xff0c 以满足对于持续测试 持续反馈的需要 xff1b 同时 xff0c 持续集成 持续交付和 DevOps
  • 树莓派c语言串口通讯程序

    在网上搜了很多关于树莓派串口通讯的例子 xff0c 但是都是用python写的 xff0c 虽然python很有名 xff0c 而且最近也在学习这门语言 xff0c 但是还是想用c语言实现一下 xff0c 因为需要用到整套系统里 xff0c
  • 怎么阅读论文,写心得体会

    收集资料 xff1a 阅读学术论文的心得体会 xff01 如何阅读学术论文 和上一篇类似大牛写论文的心得几年的写论文和审稿心得 文献阅读心得体会格式 xff1a 1 看论文题目 xff0c 做出论文类别判别 新理论 新方法 解决新问题 最高
  • 了解什么是枚举(enumeration)

    1 枚举是一组常量的集合 还可以看成包含有限特定的对象 2 自定义枚举的步骤 xff1a 将构造器私有化private将get方法拿掉在类的内部直接创建固定的对象 xff0c 比如 xff1a public static Season SP
  • python学习三十八-九天(python程序中进程的操作)

    主要内容 python的multiprocess模块和用法 在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识 xff0c 了解进程是什么应该不再困难了 xff0c 刚刚我们已经了解了 xff0c 运行中的程序就是一个
  • 电脑开机安装流氓软件、弹广告处理办法

    今天处理了一台开机自动安装流氓软件的电脑 xff0c 而且还弹广告 现在写下处理过程 文章目录 一 卸载软件 xff08 1 xff09 控制面板卸载 xff08 2 xff09 安装路径卸载 二 禁用任务计划程序三 删除软件安装包四 修改
  • VScode中使用git进行版本控制

    VScode中使用git进行版本控制 一 安装与配置二 初始化和提交本地仓库三 提交到远程仓库四 克隆和拉取1 克隆2 拉取 五 修改后的提交六 免密提交七 其他命令1 撤销2 Git 分支命令3 暂时保存更改4 同时提交多个仓库 一 安装
  • SLAM的前世今生 终于有人说清楚了

    SLAM的前世今生 终于有人说清楚了 硬创公开课 from xff1a http www leiphone com news 201605 5etiwlnkWnx7x0zb html 2016 05 16 19 40 宗仁 0 条评论 今年
  • 使用catkin进行工程管理

    catkin是什么 这是一个管理ros代码的工程管理工具 xff0c 基于cmake xff0c 但是比cmake多更多功能 xff0c 是cmake上层的代码管理规则 ros之前采用的是ros build xff0c 现在用catkin
  • ROS-melodic 安装 及:rosdep init 和 rosdep update 失败问题解决总结

    正常安装ros流程 ros 安装 melodic sudo sh c 39 etc lsb release amp amp echo 34 deb http mirrors tuna tsinghua edu cn ros ubuntu D
  • ubuntu 安装Opencv4版本后安装Opencv3,并在项目中区分使用

    安装 xff1a ubuntu 安装OpenCV3版本后安装OpenCV4 xff0c 且多版本共存 wyyang2的博客 CSDN博客 https blog csdn net wyyang2 article details 1039894
  • Ubuntu 16.04录屏软件

    Ubuntu 16 04安装录屏软件Simple Screen Recorder https www maartenbaert be simplescreenrecorder https jingyan baidu com article
  • debug时一个非常坑爹的问题——单步调试正常但是运行没结果

    单步调试能得到正确答案 xff0c 运行不出来 本人用的是codeblocks xff0c 20 03版本 话说有一天晚上 xff0c 那个不平凡的夜 xff0c 还有不到十个小时数据结构的实验课就要上交报告了 xff0c 而自己的程序却出
  • DataX使用、同步MySQL数据到HDFS案例

    文章目录 4 DataX使用4 1 DataX使用概述4 1 1 DataX任务提交命令4 1 2 DataX配置文件格式 4 2 同步MySQL数据到HDFS案例4 2 1 MySQLReader之TableMode4 2 1 1 编写配
  • 支持期限提至10年,Ubuntu 18.04 LTS

    给技术最前线加星标 xff0c 每天看技术热点 综合自 xff1a cnBeta COM Solidot Mark Shuttleworth宣布将支持Ubuntu 18 04 LTS长达十年时间 xff0c 让LTS版本的含金量更足 xff
  • 实训第五天:我的页面布局,API接口(一言,天气预报)

    1 不用不用脚本和弹窗获取手机信息 xff0c 用微信公众平台的组件开发能力 open data用于展示微信开放的数据 部分代码 xff1a lt view class 61 34 container 34 gt lt view class
  • 这是一个失败的程序员

    写程序至今 xff0c 未入门 xff0c 什么都不懂 xff01

随机推荐

  • adb dumpsys命令用法

    dumpsys命令功能很强大 xff0c 能dump系统服务的各种状态 xff0c 非常有必要熟悉该命令的用法以及含义 一 概述 1 1 dumpsys命令用法 可通过dumpsys命令查询系统服务的运行状态 对象的成员变量属性值 xff0
  • matlab subs函数

    在matlab命令行查看subs函数的帮助 subs函数一共有三种使用方法 xff1a subs s old new subs s new subs s 点击 subs 的参考页可以看到下面的详细说明 第一种使用方法 说明 xff1a su
  • Docker----如何更改docker镜像的存储路径

    原文链接 Docker 如何更改docker镜像的存储路径 背景 随着docker容器已经镜像的使用 xff0c docker镜像占用大量磁盘空间 xff0c 当然可以通过不断的删除镜像或者设置定时任务删除镜像 xff0c 但是有时候还是挺
  • ROS的geometry_msgs/PoseWithCovarianceStamped Message 消息格式

    溪西创客小屋 geometry msgs PoseWithCovarianceStamped Message Raw Message Definition This expresses an estimated pose with a re
  • 线程和进程的理解

    一 介绍线程和进程 什么是线程 是程序执行的最小单位 xff0c 一个进程在执行过程中产生建多个线程 xff0c 同一进程中的 多个 线程共享同一块内存空间及系统资源 xff0c 线程数进程的一部分 xff0c 因此线程数也被称为轻量级进程
  • Windows安装tensorflow-gpu

    0 想在Windows环境安装tensorflow gpu xff0c 显卡必须是N卡 xff08 本文以3070显卡为例进行说明 xff09 1 安装好Anaconda以及Pycharm xff08 安装教程 xff1a https ww
  • 16.进程-进程间通信概述

    进程间通信 xff0c 也就是大家常说的 IPC Inter Process Communication xff0c 指的是不同的进程间进行交流 xff0c 本质上就是进程之间发送和接收数据 xff1b 本质上 xff0c 信号也是属于进程
  • PNP问题-位姿估计方法梳理(pose estimation)

    tags 单目视觉 位姿测量 目标3D精确模型已知 xff08 建立2D 3D对应关系 xff09 xff1a 点特征 P3P问题 基于针孔成像模型 Gao的方法 xff08 opencv emgucv xff09 Kneip 的 P3P
  • 室内无人机定位导航

    个人观点 xff1a 可研究的方向 1 静态规划方面 xff1a 将控制与定位结合起来 xff1b 修正回环检测误差 xff0c 提高算法的计算精度和执行效率 xff1b 2 动态规划方面 xff1a 用神经网络识别运动物体的行进方向 xf
  • 树莓派3b程序控制无人机 (一)——电脑连树莓派

    设备 xff1a 树莓派3b xff08 备有键盘 xff0c 鼠标 xff09 xff1b win10 x64笔记本 xff1b UAV pixhawk飞控板 etc network interfaces 的设置可参考以下链接 xff1a
  • 三星6410裸机程序开发

    网上关于S3C6410裸机程序开发都是基于RealView RVDS 也有一些是基于eclipse的 xff0c 但都没有详细介绍在eclipse中如何建立S3C6410裸机程序工程 尽管友善之臂提供的6410裸机程序示例使用了eclips
  • linux socket can程序cantool

    最近写了个自认为不错的基于linux socket can程序 xff0c 主要功能 xff1a 程序具备全部CAN功能 xff0c 包括CAN标准帧 扩展帧接收与发送 CAN总线错误判断 环回等功能适用基于LINUX SOCKET机制实现
  • Linux CAN编程详解

    Linux CAN编程详解 是一篇百度文库上的文档 xff0c 主要描述了以下内容 xff1a can总线介绍及其帧类型 xff1b Linux 系统中CAN 接口配置 xff1b Linux 系统中CAN 接口应用程序开发 xff1b L
  • c++中冒号(:)和双冒号(::)的用法和c/c++ 位域结构体

    1 冒号 xff08 xff09 用法 xff08 1 xff09 表示结构体内 位域的定义 xff08 即该变量占几个bit空间 xff09 typedef struct XXX unsigned char a 4 unsigned ch
  • CAN总线与RS485的比较

    最近一个项目总体方案设计为分布式系统 xff0c 于是在通讯上纠结于CAN总线还是RS485 因此在网上搜索一些了一些关于RS485和CAN总线的资料 xff0c 除进一步认识RS485通讯特点外 xff0c 认识了CAN总线的特点及其与R
  • Linux内核中常见内存分配函数

    1 原理说明 Linux 内核中采 用了一种同时适用于32 位和64 位系统的内 存分页模型 xff0c 对于32 位系统来说 xff0c 两级页表足够用了 xff0c 而在x86 64 系 统中 xff0c 用到了四级页表 xff0c 如
  • MII、RMII、GMII接口的详细介绍

    概述 xff1a MII Media Independent Interface 介质无关接口 或称为媒体独立接口 xff0c 它是IEEE 802 3定义的以太网行业标准 它包括一个数据接口和一个MAC和PHY之间的管理接口 数据接口包括
  • Visual Studio .NET 2003中出现“无法启动调试 没有正确安装调试器”错误的解决方法

    最近 xff0c 装了Visual Studio NET 2010后 xff0c 在Visual Studio NET 2003中进行运行调试 xff0c 突然出现 无法启动调试 没有正确安装调试器 提示 xff0c 不能向往常一样进入控制
  • ftime()函数

    ftime 函数取得目前的时间和日期 相关函数 xff1a time ctime gettimeofday 表头文件 xff1a include lt sys timeb h gt 函数定义 xff1a int ftime struct t
  • 几道经典的嵌入式C语言笔试题

    C语言测试是招聘嵌入式系统程序员过程中必须而且有效的方法 这些年 xff0c 我既参加也组织了许多这种测试 xff0c 在这过程中我意识到这些测试能为带面试者和被面试者提供许多有用信息 xff0c 此外 xff0c 撇开面试的压力不谈 xf