PyTorch源码解读(四)torchvision.models

2023-05-16

PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets torchvision.models、torchvision.transforms。这3个子包的具体介绍可以参考官网https://pytorch.org/docs/master/torchvision/datasets.html。

我的另外两篇博客对其他两个部分做了介绍分别为:


torchvision.transformshttps://blog.csdn.net/sinat_42239797/article/details/93857364
torchvision.datasetshttps://blog.csdn.net/sinat_42239797/article/details/93916790

 

这篇博客介绍torchvision.models。torchvision.models这个包中alexnet、densenet、inception、resnet、squeezenet、vgg等常用的网络结构,并且提供了预训练模型,可以通过简单调用来读取网络结构和预训练模型。

如何调用上述模型?

	import torchvision 
	model = torchvision.models.densenet(pretrained=True)

这样就导入了densenet的预训练模型了。如果只需要网络结构,不需要用预训练模型的参数来初始化,那么就是:

	model = torchvision.models.densenet(pretrained=False)

由于pretrained参数默认是False,所以等价于:

​
	model = torchvision.models.densenet(pretrained=False)

接下来以导入densenet为例介绍具体导入模型时候的源码。运行model = torchvision.models.densenet(pretrained=True)的时候,是通过models包下的densenet.py脚本进行的,源码如下:

import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from collections import OrderedDict

__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']


model_urls = {
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}

首先是导入必要的库,其中model_zoo是和导入预训练模型相关的包,另外all变量定义了可以从外部import的函数名或类名。这也是前面为什么可以用torchvision.models.densenet()来调用的原因。
model_urls这个字典是用来引入预训练模型的下载地址。

def densenet121(pretrained=False, **kwargs):
    r"""Densenet-121 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
                     **kwargs)
    if pretrained:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model

DenseNet的网络结构和ResNet差不多,我们知道ResNet的核心是通过建立前面层与后面层之间的“短路连接”(shortcuts,skip connection),这有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络。DenseNet模型,它的基本思路与ResNet一致,但是它建立的是前面所有层与后面层的密集连接(dense connection),它的名称也是由此而来。DenseNet的另一大特色是通过特征在channel上的连接来实现特征重用(feature reuse)。

DenseNet模型主要由DenseBlock和Transition组成,其中:

DenseBlock是由多层模块组成,每层的特征图大小相同,层与层之间采用密集相连的。

Transition是连接两个相邻的DenseBlock,并通过pooling使得特征图大小降低,还能起到压缩模块的作用。

DenseBlock中的非线性组合函数H(.)采用的是:BN+Relu+3x3Conv结构

DenseBlock-B:采用瓶颈层来减少计算量,其结构为:BN+Relu+1x1Conv+BN+Relu+3x3Conv,主要是增加了1x1Conv,由1x1Conv得到4K(k为卷积核的个数,在本文中代表增长率)个特征图,起到的作用是降低特征数量,提升计算效率。

Transition层包括一个1x1Conv和2x2AvgPooling,结构为:BN+Relu+1x1Conv+2x2AvgPooling。

DenseBlock-BC:使用DenseBlock结构和压缩系数小于1的Transition组合结构

其源代码如下:

class _DenseLayer(nn.Sequential):
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module('norm1', nn.BatchNorm2d(num_input_features)),
        self.add_module('relu1', nn.ReLU(inplace=True)),
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
                        growth_rate, kernel_size=1, stride=1, bias=False)),
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)),
        self.add_module('relu2', nn.ReLU(inplace=True)),
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                        kernel_size=3, stride=1, padding=1, bias=False)),
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        return torch.cat([x, new_features], 1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            self.add_module('denselayer%d' % (i + 1), layer)


class _Transition(nn.Sequential):
    def __init__(self, num_input_features, num_output_features):
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))


class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_

    Args:
        growth_rate (int) - how many filters to add each layer (`k` in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
    """
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
                 num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):

        super(DenseNet, self).__init__()

        # First convolution
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(num_init_features)),
            ('relu0', nn.ReLU(inplace=True)),
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
        ]))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
                                bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
                self.features.add_module('transition%d' % (i + 1), trans)
                num_features = num_features // 2

        # Final batch norm
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

        # Official init from torch repo.
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal(m.weight.data)
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.bias.data.zero_()

    def forward(self, x):
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out
def densenet121(pretrained=False, **kwargs):
    r"""Densenet-121 model from
    `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16),
                     **kwargs)
    if pretrained:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model

densenet原文链接为https://arxiv.org/abs/1608.06993

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

PyTorch源码解读(四)torchvision.models 的相关文章

随机推荐

  • 六关节机器人工具坐标系位姿计算函数

    span class token keyword void span span class token function clacToolPose span span class token punctuation span RcEuler
  • ORB-SLAM2项目数据集运行(一)

    作为一名学习一年的机器视觉的学生 xff0c 一直以来都没有写过像样点的自己的东西 xff0c 真的是不像话 xff0c 虽然有时候觉得会占用一些时间 xff0c 但是能很大程度上帮助自己理解 从github上可以下载到源码 xff1a h
  • string是否以‘\0’结尾

    今天刷题 xff0c 刷着刷着发现了一个问题 xff0c 我好想对string这个了解不是很深 xff0c 我之前是把它跟C语言中的char类型总是分不清 xff0c 所以今天题也不刷了 xff0c 试着了解它们俩到底有什么区别 在C语言中
  • Matlab中函数fopen、fread、fseek和fwrite的用法

    1 fopen 打开文件或获取关于打开文件的信息 xff0c 下面以使用最多的情况为例 xff1a fileID 61 fopen filename permission xff1a 打开文件 xff0c 成功时 xff0c 返回一个大于或
  • PCB设计-四层板变两层板

    四层板变成两层板原本思路是 xff1a 从原理图导出一份asc文件 xff0c 将原先四层板的PCB封装全部保存到一个库里面去 xff0c 然后在PADS里导入asc文件 xff0c 然后将原先的结构定位从原来的PCB板上复制过来 xff0
  • Pycharm导入Django项目

    Pycharm导入Django项目 添加项目 xff1a file gt open 找到项目所在的位置打开项目 添加django后台项目路径 file gt settings gt Languages amp Frameworks 找到Dj
  • Windows安装多个python解释器

    Windows安装多个python解释器 注 xff1a 此方法仅仅是针对安装多个需要配置环境变量的解释器 xff0c 意思是可以在cmd中可以使用并完美切换的 xff1b 针对一个环境变量的解释器无效 xff0c 只有一个环境变量的主解释
  • Go语言开发环境搭建

    一 Windows下安装 安装Go开发包 官网下载Go语言开发包 xff0c 安装方法就是next xff0c 除了安装位置选择 安装目录选定一个好记的 尽量不要放在C盘中 xff0c 除非你盘空间很大 xff0c 完全够用 此路径需要自己
  • Django Rest Framework的使用整理

    Django Rest Framework 一 Rest Framework的基本介绍 程序的客户端有很多 xff1a 硬件设备 xff0c 游戏 xff0c APP xff0c 软件 xff0c 其他的外部服务端 1 Web应用模式 在开
  • Linux部署Python项目

    项目部署 项目部署的操作通常是由运维人员来进行统一管理装配的 xff0c 但是对于一个开发人员来讲 xff0c 基础的项目部署还是要会的 这里我主要讲解python的项目是如何部署的 xff0c 至于项目哪里来的 xff0c 这就要看观众如
  • 2、机器学习简介及其分类

    简介 机器学习是指让机器从数据中自动学习规律和知识 并利用这些规律和知识进行预测或决策的技术 机器学习包括监督学习 无监督学习 强化学习 其中监督学习也被称作有监督的学习 有监督的意思就是预先知道据有什么样的目标 通过一些已经知道结果的数据
  • VScode启动Vue项目

    VScode启动Vue项目 1 使用VScode打开文件夹 2 找到运行按钮 3 判断有没有默认的配置文件存在 4 若文件夹存在就检查配置文件是否存在 xff08 1 xff09 打开launch json xff0c 把如下代码粘贴到里面
  • Gunicorn+django部署

    部署前提是服务器中要有项目中所需的其他服务 xff0c 例 xff1a mysql数据库 xff0c nginx xff0c python解释器等 xff0c 在其他环境搭好的情况下使用此方式可简单部署一个django项目 至于安装上面提到
  • Protobuf生成文件报错

    Mac下protobuf生成文件报错问题解决办法 xff0c windows下就不会这么麻烦了 xff0c 如果linux下出现类似报错信息按照下面的解决逻辑依然适用 1 由 go out引发的报错 1 报错信息 xff1a user 64
  • Git操作的基本命令

    git命令常用步骤 初始化 xff0c 把当前文件夹作为git本地仓库 git init 把本地仓库与选程仓库关联 git remote add origin http gitee com 把项目区中做了修改的文件添加到暂存区 git ad
  • grpc的使用

    需要保证电脑中安装了 xff1a protobuf安装教程如果出现报错请看博客 xff1a protobuf报错问题解决基本使用demo地址 xff1a demo安全传输 流式传输的demo地址 xff1a demo2 简介 xff1a r
  • Matlab找不到新添加在路径里的.m文件

    我是把文件放在matlab toolbox路径下了 xff0c 需要更新一下toolboxcache就可以了 使用命令的方式 xff1a rehash toolboxcache
  • C中字符串查找

    目录 1 查找单个字符 strchr strrchr 2 查找多个字符中任一字符 strpbrk 3 查找一个子串 strstr 4 逐个检查两个字符串 strspc strcspn 字符串查找分为 xff1a 在字符串中查找单个字符 xf
  • 神经网络中的epoch、batch、batch_size、iteration的理解

    神经网络中的epoch batch batch size iteration的理解 下面说说这三个区别 xff1a xff08 1 xff09 batchsize xff1a 批大小 在深度学习中 xff0c 一般采用SGD训练 xff0c
  • PyTorch源码解读(四)torchvision.models

    PyTorch框架中有一个非常重要且好用的包 xff1a torchvision xff0c 该包主要由3个子包组成 xff0c 分别是 xff1a torchvision datasets torchvision models torch