Redis入门完整教程:缓存的收益和成本

2023-05-16

图11-1左侧为客户端直接调用存储层的架构,右侧为比较典型的缓存层
+存储层架构,下面分析一下缓存加入后带来的收益和成本。
收益如下:
·加速读写:因为缓存通常都是全内存的(例如Redis、Memcache),而
存储层通常读写性能不够强悍(例如MySQL),通过缓存的使用可以有效
地加速读写,优化用户体验。
·降低后端负载:帮助后端减少访问量和复杂计算(例如很复杂的SQL
语句),在很大程度降低了后端的负载。

 成本如下:
·数据不一致性:缓存层和存储层的数据存在着一定时间窗口的不一致
性,时间窗口跟更新策略有关。
·代码维护成本:加入缓存后,需要同时处理缓存层和存储层的逻辑,
增大了开发者维护代码的成本。
·运维成本:以Redis Cluster为例,加入后无形中增加了运维成本。
缓存的使用场景基本包含如下两种:
·开销大的复杂计算:以MySQL为例子,一些复杂的操作或者计算(例
如大量联表操作、一些分组计算),如果不加缓存,不但无法满足高并发
量,同时也会给MySQL带来巨大的负担。
·加速请求响应:即使查询单条后端数据足够快(例如select*from table
where id=),那么依然可以使用缓存,以Redis为例子,每秒可以完成数万
次读写,并且提供的批量操作可以优化整个IO链的响应时间。.

11.2 缓存更新策略
缓存中的数据通常都是有生命周期的,需要在指定时间后被删除或更
新,这样可以保证缓存空间在一个可控的范围。但是缓存中的数据会和数据
源中的真实数据有一段时间窗口的不一致,需要利用某些策略进行更新。下
面将分别从使用场景、一致性、开发人员开发/维护成本三个方面介绍三种
缓存的更新策略。
1.LRU/LFU/FIFO算法剔除
使用场景。剔除算法通常用于缓存使用量超过了预设的最大值时候,如
何对现有的数据进行剔除。例如Redis使用maxmemory-policy这个配置作为内
存最大值后对于数据的剔除策略。
一致性。要清理哪些数据是由具体算法决定,开发人员只能决定使用哪
种算法,所以数据的一致性是最差的。
维护成本。算法不需要开发人员自己来实现,通常只需要配置最大
maxmemory和对应的策略即可。开发人员只需要知道每种算法的含义,选择
适合自己的算法即可。
2.超时剔除
使用场景。超时剔除通过给缓存数据设置过期时间,让其在过期时间后
自动删除,例如Redis提供的expire命令。如果业务可以容忍一段时间内,缓
存层数据和存储层数据不一致,那么可以为其设置过期时间。在数据过期
后,再从真实数据源获取数据,重新放到缓存并设置过期时间。例如一个视
频的描述信息,可以容忍几分钟内数据不一致,但是涉及交易方面的业务,
后果可想而知。
一致性。一段时间窗口内(取决于过期时间长短)存在一致性问题,即
缓存数据和真实数据源的数据不一致。
维护成本。维护成本不是很高,只需设置expire过期时间即可,当然前
提是应用方允许这段时间可能发生的数据不一致。
3.主动更新
使用场景。应用方对于数据的一致性要求高,需要在真实数据更新后,
立即更新缓存数据。例如可以利用消息系统或者其他方式通知缓存更新。
一致性。一致性最高,但如果主动更新发生了问题,那么这条数据很可
能很长时间不会更新,所以建议结合超时剔除一起使用效果会更好。
维护成本。维护成本会比较高,开发者需要自己来完成更新,并保证更
新操作的正确性。
表11-1给出了缓存的三种常见更新策略的对比。

4.最佳实践
有两个建议:
·低一致性业务建议配置最大内存和淘汰策略的方式使用。
·高一致性业务可以结合使用超时剔除和主动更新,这样即使主动更新
出了问题,也能保证数据过期时间后删除脏数据。
700
11.3 缓存粒度控制
图11-2是很多项目关于缓存比较常用的选型,缓存层选用Redis,存储
层选用MySQL。 

例如现在需要将MySQL的用户信息使用Redis缓存,可以执行如下操
作:
从MySQL获取用户信息:
select * from user where id={id}
将用户信息缓存到Redis中:
set user:{id} 'select * from user where id={id}'
假设用户表有100个列,需要缓存到什么维度呢?
·缓存全部列:
set user:{id} 'select * from user where id={id}'
·缓存部分重要列:
set user:{id} 'select {importantColumn1}, {important Column2} ... {importantColumnN}
from user where id={id}'
上述这个问题就是缓存粒度问题,究竟是缓存全部属性还是只缓存部分
重要属性呢?下面将从通用性、空间占用、代码维护三个角度进行说明。
通用性。缓存全部数据比部分数据更加通用,但从实际经验看,很长时
间内应用只需要几个重要的属性。
空间占用。缓存全部数据要比部分数据占用更多的空间,可能存在以下
问题:
·全部数据会造成内存的浪费。
·全部数据可能每次传输产生的网络流量会比较大,耗时相对较大,在
极端情况下会阻塞网络。
·全部数据的序列化和反序列化的CPU开销更大。
代码维护。全部数据的优势更加明显,而部分数据一旦要加新字段需要
修改业务代码,而且修改后通常还需要刷新缓存数据。
表11-2给出缓存全部数据和部分数据在通用性、空间占用、代码维护上
的对比,开发人员可以酌情选择。 

缓存粒度问题是一个容易被忽视的问题,如果使用不当,可能会造成很
多无用空间的浪费,网络带宽的浪费,代码通用性较差等情况,需要综合数
据通用性、空间占用比、代码维护性三点进行取舍。
 


11.4 穿透优化
缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命
中,通常出于容错的考虑,如果从存储层查不到数据则不写入缓存层,如图
11-3所示整个过程分为如下3步:
1)缓存层不命中。
2)存储层不命中,不将空结果写回缓存。
3)返回空结果。
缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓
存保护后端存储的意义。
缓存穿透问题可能会使后端存储负载加大,由于很多后端存储不具备高
并发性,甚至可能造成后端存储宕掉。通常可以在程序中分别统计总调用
数、缓存层命中数、存储层命中数,如果发现大量存储层空命中,可能就是
出现了缓存穿透问题。
造成缓存穿透的基本原因有两个。第一,自身业务代码或者数据出现问
题,第二,一些恶意攻击、爬虫等造成大量空命中。下面我们来看一下如何
解决缓存穿透问题。
1.缓存空对象
如图11-4所示,当第2步存储层不命中后,仍然将空对象保留到缓存层
中,之后再访问这个数据将会从缓存中获取,这样就保护了后端数据源。 

 

缓存空对象会有两个问题:第一,空值做了缓存,意味着缓存层中存了
更多的键,需要更多的内存空间(如果是攻击,问题更严重),比较有效的
方法是针对这类数据设置一个较短的过期时间,让其自动剔除。第二,缓存
层和存储层的数据会有一段时间窗口的不一致,可能会对业务有一定影响。
例如过期时间设置为5分钟,如果此时存储层添加了这个数据,那此段时间
就会出现缓存层和存储层数据的不一致,此时可以利用消息系统或者其他方
式清除掉缓存层中的空对象。
下面给出了缓存空对象的实现代码:

String get(String key) {
//  从缓存中获取数据
String cacheValue = cache.get(key);
//  缓存为空
if (StringUtils.isBlank(cacheValue)) {
//  从存储中获取
String storageValue = storage.get(key);
cache.set(key, storageValue);
//  如果存储数据为空,需要设置一个过期时间 (300 秒 )
if (storageValue == null) {
cache.expire(key, 60 * 5);
}
return storageValue;
} else {
//  缓存非空
return cacheValue;
}

2.布隆过滤器拦截
如图11-5所示,在访问缓存层和存储层之前,将存在的key用布隆过滤
器提前保存起来,做第一层拦截。例如:一个推荐系统有4亿个用户id,每
个小时算法工程师会根据每个用户之前历史行为计算出推荐数据放到存储层
中,但是最新的用户由于没有历史行为,就会发生缓存穿透的行为,为此可
以将所有推荐数据的用户做成布隆过滤器。如果布隆过滤器认为该用户id不
存在,那么就不会访问存储层,在一定程度保护了存储层。

开发提示
有关布隆过滤器的相关知识,可以参
考:https://en.wikipedia.org/wiki/Bloom_filter可以利用Redis的Bitmaps实现布
隆过滤器,GitHub上已经开源了类似的方案,读者可以进行参
考:https://github.com/erikdubbelboer/redis-lua-scaling-bloom-filter。
这种方法适用于数据命中不高、数据相对固定、实时性低(通常是数据
集较大)的应用场景,代码维护较为复杂,但是缓存空间占用少。
3.两种方案对比
708
前面介绍了缓存穿透问题的两种解决方法(实际上这个问题是一个开放
问题,有很多解决方法),下面通过表11-3从适用场景和维护成本两个方面
对两种方案进行分析。

11.5 无底洞优化
2010年,Facebook的Memcache节点已经达到了3000个,承载着TB级别
的缓存数据。但开发和运维人员发现了一个问题,为了满足业务要求添加了
大量新Memcache节点,但是发现性能不但没有好转反而下降了,当时将这
种现象称为缓存的“无底洞”现象。
那么为什么会产生这种现象呢,通常来说添加节点使得Memcache集群
性能应该更强了,但事实并非如此。键值数据库由于通常采用哈希函数将
key映射到各个节点上,造成key的分布与业务无关,但是由于数据量和访问
量的持续增长,造成需要添加大量节点做水平扩容,导致键值分布到更多的
节点上,所以无论是Memcache还是Redis的分布式,批量操作通常需要从不
同节点上获取,相比于单机批量操作只涉及一次网络操作,分布式批量操作
会涉及多次网络时间。
图11-6展示了在分布式条件下,一次mget操作需要访问多个Redis节点,
需要多次网络时间。
而图11-7由于所有键值都集中在一个节点上,所以一次批量操作只需要
一次网络时间。
无底洞问题分析:
·客户端一次批量操作会涉及多次网络操作,也就意味着批量操作会随
着节点的增多,耗时会不断增大。
·网络连接数变多,对节点的性能也有一定影响。
用一句通俗的话总结就是,更多的节点不代表更高的性能,所谓“无底
洞”就是说投入越多不一定产出越多。但是分布式又是不可以避免的,因为
访问量和数据量越来越大,一个节点根本抗不住,所以如何高效地在分布式
缓存中批量操作是一个难点。
下面介绍如何在分布式条件下优化批量操作。在介绍具体的方法之前,
我们来看一下常见的IO优化思路: 

·命令本身的优化,例如优化SQL语句等。
·减少网络通信次数。
·降低接入成本,例如客户端使用长连/连接池、NIO等。
这里我们假设命令、客户端连接已经为最优,重点讨论减少网络操作次
数。
以Redis批量获取n个字符串为例,有三种实现方法,如图11-8所示。
·客户端n次get:n次网络+n次get命令本身。
·客户端1次pipeline get:1次网络+n次get命令本身。
·客户端1次mget:1次网络+1次mget命令本身。
上面已经给出了IO的优化思路以及单个节点的批量操作优化方式,下面
我们将结合Redis Cluster的一些特性对四种分布式的批量操作方式进行说
明。 

1.串行命令
由于n个key是比较均匀地分布在Redis Cluster的各个节点上,因此无法
使用mget命令一次性获取,所以通常来讲要获取n个key的值,最简单的方法
就是逐次执行n个get命令,这种操作时间复杂度较高,它的操作时间=n次网
络时间+n次命令时间,网络次数是n。很显然这种方案不是最优的,但是实
现起来比较简单,如图11-9所示。 

Jedis客户端示例代码如下:
List<String> serialMGet(List<String> keys) {
//  结果集
List<String> values = new ArrayList<String>();
// n 次串行 get
for (String key : keys) {
String value = jedisCluster.get(key);
values.add(value);
}
return values;
}
2.串行IO
Redis Cluster使用CRC16算法计算出散列值,再取对16383的余数就可以
算出slot值,同时10.5节我们提到过Smart客户端会保存slot和节点的对应关
系,有了这两个数据就可以将属于同一个节点的key进行归档,得到每个节
点的key子列表,之后对每个节点执行mget或者Pipeline操作,它的操作时间
=node次网络时间+n次命令时间,网络次数是node的个数,整个过程如图11-
10所示,很明显这种方案比第一种要好很多,但是如果节点数太多,还是有
一定的性能问题。 

Jedis客户端示例代码如下:
Map<String, String> serialIOMget(List<String> keys) {
//  结果集
Map<String, String> keyValueMap = new HashMap<String, String>();
//  属于各个节点的 key 列表 ,JedisPool 要提供基于 ip 和 port 的 hashcode 方法
Map<JedisPool, List<String>> nodeKeyListMap = new HashMap<JedisPool, List<String>>();
//  遍历所有的 key
for (String key : keys) {
//  使用 CRC16 本地计算每个 key 的 slot
int slot = JedisClusterCRC16.getSlot(key);
//  通过 jedisCluster 本地 slot->node 映射获取 slot 对应的 node
JedisPool jedisPool = jedisCluster.getConnectionHandler().getJedisPoolFrom
Slot(slot);
//  归档
if (nodeKeyListMap.containsKey(jedisPool)) {
nodeKeyListMap.get(jedisPool).add(key);
} else {
List<String> list = new ArrayList<String>();
list.add(key);
nodeKeyListMap.put(jedisPool, list);
}
}
//  从每个节点上批量获取,这里使用 mget 也可以使用 pipeline
for (Entry<JedisPool, List<String>> entry : nodeKeyListMap.entrySet()) {
JedisPool jedisPool = entry.getKey();
List<String> nodeKeyList = entry.getValue();
//  列表变为数组
String[] nodeKeyArray = nodeKeyList.toArray(new String[nodeKeyList.size()]);
//  批量获取,可以使用 mget 或者 Pipeline
List<String> nodeValueList = jedisPool.getResource().mget(nodeKeyArray);
//  归档
for (int i = 0; i < nodeKeyList.size(); i++) {
keyValueMap.put(nodeKeyList.get(i), nodeValueList.get(i));
}
}
return keyValueMap;
}
3.并行IO
此方案是将方案2中的最后一步改为多线程执行,网络次数虽然还是节
点个数,但由于使用多线程网络时间变为O(1),这种方案会增加编程的
复杂度。它的操作时间为:
max_slow(node 网络时间 )+n 次命令时间
整个过程如图11-11所示。
Jedis客户端示例代码如下,只需要将串行IO变为多线程:
Map<String, String> parallelIOMget(List<String> keys) {
//  结果集
Map<String, String> keyValueMap = new HashMap<String, String>();
//  属于各个节点的 key 列表
Map<JedisPool, List<String>> nodeKeyListMap = new HashMap<JedisPool, List<String>>();
... 和前面一样
//  多线程 mget ,最终汇总结果
for (Entry<JedisPool, List<String>> entry : nodeKeyListMap.entrySet()) {
//  多线程实现
}
return keyValueMap;

4.hash_tag实现
10.5节介绍了Redis Cluster的hash_tag功能,它可以将多个key强制分配到
一个节点上,它的操作时间=1次网络时间+n次命令时间,如图11-12所示。 

如图11-13所示,所有key属于node2节点。 

图11-13 hashtag只需要1次网络时间

 Jedis客户端示例代码如下:
List<String> hashTagMget(String[] hashTagKeys) {
return jedisCluster.mget(hashTagKeys);
}
上面已经对批量操作的四种方案进行了介绍,最后通过表11-4来对四种
方案的优缺点、网络IO次数进行一个总结。

表11-4 四种批量操作解决方案对比

 实际开发中可以根据表11-4给出的优缺点进行分析,没有最好的方案只
有最合适的方案。

11.6 雪崩优化
图11-14描述了什么是缓存雪崩:由于缓存层承载着大量请求,有效地
保护了存储层,但是如果缓存层由于某些原因不能提供服务,于是所有的请
求都会达到存储层,存储层的调用量会暴增,造成存储层也会级联宕机的情
况。缓存雪崩的英文原意是stampeding herd(奔逃的野牛),指的是缓存层
宕掉后,流量会像奔逃的野牛一样,打向后端存储。

预防和解决缓存雪崩问题,可以从以下三个方面进行着手。
1)保证缓存层服务高可用性。和飞机都有多个引擎一样,如果缓存层
设计成高可用的,即使个别节点、个别机器、甚至是机房宕掉,依然可以提
供服务,例如前面介绍过的Redis Sentinel和Redis Cluster都实现了高可用。
2)依赖隔离组件为后端限流并降级。无论是缓存层还是存储层都会有
出错的概率,可以将它们视同为资源。作为并发量较大的系统,假如有一个
资源不可用,可能会造成线程全部阻塞(hang)在这个资源上,造成整个系
统不可用。降级机制在高并发系统中是非常普遍的:比如推荐服务中,如果
个性化推荐服务不可用,可以降级补充热点数据,不至于造成前端页面是开
天窗。在实际项目中,我们需要对重要的资源(例如Redis、MySQL、
HBase、外部接口)都进行隔离,让每种资源都单独运行在自己的线程池
中,即使个别资源出现了问题,对其他服务没有影响。但是线程池如何管
理,比如如何关闭资源池、开启资源池、资源池阀值管理,这些做起来还是
相当复杂的。这里推荐一个Java依赖隔离工具
Hystrix(https://github.com/netflix/hystrix),如图11-15所示。Hystrix是解决依
赖隔离的利器,但是该内容已经超出本教程的范围,同时只适用于Java应用,
所以这里不会详细介绍。
3)提前演练。在项目上线前,演练缓存层宕掉后,应用以及后端的负
载情况以及可能出现的问题,在此基础上做一些预案设定。 

11.7 热点key重建优化
开发人员使用“缓存+过期时间”的策略既可以加速数据读写,又保证数
据的定期更新,这种模式基本能够满足绝大部分需求。但是有两个问题如果
同时出现,可能就会对应用造成致命的危害:
·当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常
大。
·重建缓存不能在短时间完成,可能是一个复杂计算,例如复杂的
SQL、多次IO、多个依赖等。
在缓存失效的瞬间,有大量线程来重建缓存(如图11-16所示),造成
后端负载加大,甚至可能会让应用崩溃。
要解决这个问题也不是很复杂,但是不能为了解决这个问题给系统带来
更多的麻烦,所以需要制定如下目标:
·减少重建缓存的次数。

·数据尽可能一致。
·较少的潜在危险。
1.互斥锁(mutex key)
此方法只允许一个线程重建缓存,其他线程等待重建缓存的线程执行
完,重新从缓存获取数据即可,整个过程如图11-17所示。

下面代码使用Redis的setnx命令实现上述功能:

String get(String key) {
//  从 Redis 中获取数据
String value = redis.get(key);
//  如果 value 为空,则开始重构缓存
if (value == null) {
//  只允许一个线程重构缓存,使用 nx ,并设置过期时间 ex
String mutexKey = "mutext:key:" + key;
if (redis.set(mutexKey, "1", "ex 180", "nx")) {
//  从数据源获取数据
value = db.get(key);
//  回写 Redis ,并设置过期时间
redis.setex(key, timeout, value);
//  删除 key_mutex
redis.delete(mutexKey);
}
//  其他线程休息 50 毫秒后重试
else {
Thread.sleep(50);
get(key);
}
}
return value;
}

1)从Redis获取数据,如果值不为空,则直接返回值;否则执行下面的
2.1)和2.2)步骤。
2.1)如果set(nx和ex)结果为true,说明此时没有其他线程重建缓存,
那么当前线程执行缓存构建逻辑。
2.2)如果set(nx和ex)结果为false,说明此时已经有其他线程正在执
行构建缓存的工作,那么当前线程将休息指定时间(例如这里是50毫秒,取
决于构建缓存的速度)后,重新执行函数,直到获取到数据。
2.永远不过期
“永远不过期”包含两层意思:
·从缓存层面来看,确实没有设置过期时间,所以不会出现热点key过期
后产生的问题,也就是“物理”不过期。
·从功能层面来看,为每个value设置一个逻辑过期时间,当发现超过逻
辑过期时间后,会使用单独的线程去构建缓存。
整个过程如图11-18所示。
从实战看,此方法有效杜绝了热点key产生的问题,但唯一不足的就是
重构缓存期间,会出现数据不一致的情况,这取决于应用方是否容忍这种不
一致。下面代码使用Redis进行模拟:

String get(final String key) {
V v = redis.get(key);
String value = v.getValue();
//  逻辑过期时间

long logicTimeout = v.getLogicTimeout();
//  如果逻辑过期时间小于当前时间,开始后台构建
if (v.logicTimeout <= System.currentTimeMillis()) {
String mutexKey = "mutex:key:" + key;
if (redis.set(mutexKey, "1", "ex 180", "nx")) {
//  重构缓存
threadPool.execute(new Runnable() {
public void run() {
String dbValue = db.get(key);
redis.set(key, (dbvalue,newLogicTimeout));
redis.delete(mutexKey);
}
});
}
}
return value;
}

 作为一个并发量较大的应用,在使用缓存时有三个目标:第一,加快用
户访问速度,提高用户体验。第二,降低后端负载,减少潜在的风险,保证
系统平稳。第三,保证数据“尽可能”及时更新。下面将按照这三个维度对上
述两种解决方案进行分析。
·互斥锁(mutex key):这种方案思路比较简单,但是存在一定的隐
患,如果构建缓存过程出现问题或者时间较长,可能会存在死锁和线程池阻
塞的风险,但是这种方法能够较好地降低后端存储负载,并在一致性上做得
比较好。
·“永远不过期”:这种方案由于没有设置真正的过期时间,实际上已经
不存在热点key产生的一系列危害,但是会存在数据不一致的情况,同时代
码复杂度会增大。
两种解决方法对比如表11-5所示。

11.8 本章重点回顾
1)缓存的使用带来的收益是能够加速读写,降低后端存储负载。
2)缓存的使用带来的成本是缓存和存储数据不一致性,代码维护成本
增大,架构复杂度增大。
3)比较推荐的缓存更新策略是结合剔除、超时、主动更新三种方案共
同完成。
4)穿透问题:使用缓存空对象和布隆过滤器来解决,注意它们各自的
使用场景和局限性。
5)无底洞问题:分布式缓存中,有更多的机器不保证有更高的性能。
有四种批量操作方式:串行命令、串行IO、并行IO、hash_tag。
6)雪崩问题:缓存层高可用、客户端降级、提前演练是解决雪崩问题
的重要方法。
7)热点key问题:互斥锁、“永远不过期”能够在一定程度上解决热点
key问题,开发人员在使用时要了解它们各自的使用成本。 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Redis入门完整教程:缓存的收益和成本 的相关文章

  • 第八弹 ROS发布者Publisher的编程实现

    1 话题模型 xff08 发布与订阅 xff09 2 创建功能包 catkin create pkg learning topic roscpp rospy std msgs geometry msgs turtlesim 建立一个名为le
  • TRIZ创新思维方法_简要复习

    一 TRIZ介绍 TRIZ理论成功地揭示了创造发明的内在规律和原理 xff0c 着力于澄清和强调系统中存在的矛盾 xff0c 其目标是完全解决矛盾 xff0c 获得最终的理想解 它不是采取折中或者妥协的做法 xff0c 而且它是基于技术的发
  • Generalized Focal Loss: Learning Qualified and Distributed BBoxes for Dense Object Detection论文翻译阅读

    Generalized Focal Loss Learning Qualified and Distributed Bounding Boxes for Dense Object Detection论文翻译阅读 论文下载地址 xff1a 点
  • ubuntu16.04对SD卡进行分区

    赶在2020年上半年的最后一天 xff0c 匆忙地写上一个博客 这篇博客是对自己的一个反思 xff0c 我的博客属于自己完全开辟的内容几很少 xff0c 有些博客大家随便在网上一搜就能找到 说实话 xff0c 有时候我会怀疑自己的智商有问题
  • RT-thread移植指南-RISC-V

    目录 RT thread移植指南 RISC V 1 概述 1 1 移植资料参考 1 2 移植开发环境准备 2 移植步骤 2 1 全局中断开关函数 2 2 线程上下文切换函数 2 3 线程栈的初始化 2 4 时钟节拍的配置 2 5 中断函数
  • 寒假学习心得--从0开始学破解

    寒假学习心得 从0开始学破解 写给和我一样将要接触或者才接触破解 的朋友们 前提 你必须得真正喜欢 她 一 工欲善其事 必先利其器 1 找一个中文版的OD PEID 记得就OD就有咱PYG版的某牛人强化版的等等等等 找一个合适的工具 干起事
  • 常用的“密码重置”代码

    61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61
  • ORACLE多表查询优化

    转自某地 对作者很愧疚 不晓得地址了 ORACLE 多表查询优化 这里提供的是执行性能的优化 而不是后台数据库优化器资料 参考数据库开发性能方面的各种问题 收集了一些优化方案统计如下 当然 象索引等优化方案太过简单就不列入了 嘿嘿 执行路径
  • Word to PDF Converter v3.0 算法分析及注册机

    Word to PDF Converter v3 0算法分析及注册机 详细过程 1 xff0c 主程序在C Program Files doc2pdf DOC2PDF dll xff0c PEID查壳为ASProtect 1 23 RC1
  • 安全策略调整步骤

    1 修改防火墙 xff0c 保留22 SSHD 8081 APACHE 80 关闭端口443 HTTPS 3306 MYSQL 8080 8088 53 123 2 针对PHP的BUG和安全漏洞 xff0c 只有升级版本一途 xff0c 经
  • 获取微信openid(或昵称头像)的授权登录及其代理

    lt php 本页用于微信授权登录及其代理 64 version V2 0 64 author ty1921 lt ty1921 64 gmail com gt 64 param backurl 传get参数backurl xff0c 则授
  • 常用的PHP文件头和HTML5文件头(含移动端)

    lt php PHP Header Created by ty1921 64 gmail com Ver V1 Date 2017 8 18 1 session session start 2 display errors ini set
  • VB+PHP实现在线修改Windows服务器的配置文件

    本文仅供记录 存档备案用 用途 xff1a 某电话转接系统 xff0c 需要每天修改配置文件 并重启服务端程序 原理 xff1a WEB用于展示修改界面 xff0c 提交 保存配置文件的相关数据 VB端用于定时轮训WEB上保存的数据 xff
  • OLLVM分析

    一 LLVM是什么 LLVM最初是Low Level Virtual Machine的缩写 xff0c 定位是一个 xff0c 但是是比较底层的虚拟机 然而LLVM本身并不是一个完整的编译器 xff0c LLVM是一个编译器基础架构 xff
  • A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors论文翻译整理

    综述部分 x1f4cc 多传感器融合有两个趋势 xff1a 基于滤波的融合 xff08 MSCKF EKF UKF xff09 基于优化的滤波 xff08 BA xff09 基于滤波器的方法对时间同步很敏感 任何迟来的测量都会引起麻烦 xf
  • 按键精灵的5级开发认证,笔试题参考

    4题是抄的 xff0c 只是为了过级 最后得93分 xff0c 可能代码还是不够最优 xff0c 有看出的大大希望能不吝指点 1 写一个脚本 xff0c 要求启动时 xff0c 记录 xff08 录制 xff09 当前鼠标的移动轨迹 xff
  • 常见端口号和对应服务的概念和作用

    端口号的主要作用是表示一台计算机中的特定进程所提供的服务 网络中的计算机是通过IP地址来代表其身份的 xff0c 它只能表示某台特定的计算机 xff0c 但是一台计算机上可以同时提供很多个服务 xff0c 如数据库服务 FTP服务 Web服
  • 51单片机学习历程---单片机入门

    主要用来做控制的 xff0c 如果要驱动外部设备的话 xff0c 需要使用驱动电路 proteus 模拟 51 8位 最小系统 晶振电路 提供时钟 12M xff08 方便计算机器周期 xff09 11 0592M xff08 非常适合串行
  • 手把手教你使用--常用模块--HC05蓝牙模块,无线蓝牙串口透传模块,(实例:手机蓝牙控制STM32单片机点亮LED灯)

    最近在学STM32 xff0c 基本的学完了 xff0c 想学几个模块来巩固一下知识 xff0c 就想到了蓝牙模块 玩啥好难过有很多博客教怎么连的 xff0c 但自己看起来还是有点糊涂 模块的原理和知识点我就不讲解了 xff0c 这里我主要
  • FreeRTOS实时操作系统----机制

    四 机制 目录 四 机制 4 1任务优先级 4 1 1高优先级抢占低优先级 4 1 2时间片 4 2任务调度器 4 3临界段的保护 4 4空闲任务与阻塞延时 4 5任务延时列表 4 6消息队列 4 6 1消息队列的基本概念 4 6 2消息队

随机推荐

  • 三极管导通条件

    NPN三极管 xff0c 箭头朝外 xff1a 高电平导通 PNP三极管 xff0c 箭头朝里 xff1a 低电平导通
  • 74HC1G66模拟开关,多路复用

    SEL为低电平的时候 xff0c SD导通 SEL为高电平的时候 xff0c SD不导通 直接看数据手册
  • 一张图了解MOS管导通条件

    不管他长什么样 xff0c 直接就看箭头指向 箭头向栅极 xff0c 就是nmos管 xff0c 高电平导通 箭头向外 xff0c 就是pmos管 xff0c 低电平导通 一边连了两根线的就是s极
  • Android SDK的安装配置

    SDK xff1a xff08 software development kit xff09 软件开发工具包 被软件开发工程师用于为特定的软件包 软件框架 硬件平台 操作系统等建立应用软件的开发工具的集合 因此 xff0c Android
  • 1.C++简介

    学习目标 xff1a 初识C 43 43 xff0c 介绍C 43 43 一些简单的语法 xff1a 初识C 43 43 数据类型 运算符 程序流程结构 学习内容 xff1a 1 初识C 43 43 一个简单的C 43 43 框架 xff0
  • 死锁形成的原因和四个必要条件

    死锁的概念 死锁是指两个或两个以上的进程 xff08 线程 xff09 在运行过程中因争夺资源而造成的一种僵局 xff0c 若无外力作用 xff0c 这些进程 xff08 线程 xff09 都将无法向前推进 xff0c 这时就形成了死锁 处
  • Android P阻止调用非sdk api后,Atlas该何去何从

    0 背景 自从Android 9 0后 xff0c Android就已经开始着手阻止app开发调用非sdk的api xff0c 也就是被标记为 64 hide的变量 函数 类不可以通过反射调用 xff0c 否则会提示NoSuchMethod
  • 简历应该这么写!

    很多同学刚开始找工作时 xff0c 投出去很多简历 xff0c 但是都石沉大海了 xff0c 没有后文 之所以简历不通过 xff0c 往往都是简历不够 好看 很多大公司HR经常一天要看几百份 xff0c 甚至上千份简历 xff0c 基本都是
  • 希望计算机专业同学都知道这些老师

    C语言教程 翁凯老师 赫斌 翁恺老师是土生土长的浙大码农 xff0c 从本科到博士都毕业于浙大计算机系 xff0c 后来留校教书 xff0c 一教就是20多年 翁恺老师的c语言课程非常好 xff0c 讲解特别有趣 xff0c 很适合初学者学
  • 100个python算法超详细讲解:抓交通肇事犯

    1 xff0e 问题描述 一辆卡车违反交通规则 xff0c 撞人后逃跑 现场有三人目 该事件 xff0c 但都 没有记住车号 xff0c 只记下了车号的一些特征 说 xff1a 牌照的前两位数字是相 同的 xff1b 乙说 xff1a 牌照
  • 100个python算法超详细讲解:百钱百鸡

    1 xff0e 问题描述 中国古代数学家张丘建在他的 算经 中提出了一个著名的 百钱 百鸡问题 xff1a 一只公鸡值五钱 xff0c 一只母鸡值三钱 xff0c 三只小鸡值一钱 xff0c 现 在要用百钱买百鸡 xff0c 请问公鸡 母鸡
  • 100个python算法超详细讲解:水仙花数

    1 xff0e 问题描述 输出所有的 水仙花数 所谓的 水仙花数 是指一个三位数 xff0c 其各位数字的立方 和等于该数本身 xff0c 例如 xff0c 153是 水仙花数 xff0c 因为153 61 1 3 43 1 3 43 3
  • 100个python算法超详细讲解:常胜将军

    100个python算法超详细讲解 64 谷歌学术 1 xff0e 问题描述 有火柴21根 xff0c 两人依次取 xff0c 每次每人只可取走1 xff5e 4根 xff0c 不能多取 xff0c 也不能不取 xff0c 谁取到最后一根火
  • 100个python算法超详细讲解:逆序输出数字

    100个python算法超详细讲解 64 谷哥技术 1 xff0e 问题描述 编程实现将输入的整数逆序输出 2 xff0e 问题分析 前面我们已经接触过很多的递归问题了 xff0c 这些递归问题可以简单 地分成两类 xff1a 一类可以归结
  • 100个python算法超详细讲解:角谷猜想

    1 xff0e 问题描述 角谷猜想在西方常被称为西拉古斯猜想 xff0c 据说这个问题首先是在 美国的西拉古斯大学被研究的 xff0c 而在东方 xff0c 这个问题则由将它带到日 本的日本数学家角谷静夫的名字来命名 xff0c 故被称为角
  • 100个python算法超详细讲解:统计学生成绩

    完整版下载 超详细Python算法案例讲解100例 zip Python文档类资源 CSDN下载 1 xff0e 问题描述 有5个学生 xff0c 每个学生有三门课程的成绩需要统计 要求从键盘输入学生的学号 姓名以及三门课程 的成绩 xff
  • apt update、apt upgrade 和 apt dist-upgrade 的区别

    1 root 64 kali apt update apt update 的作用是从 etc apt sources list文件中定义的源中获取的最新的软件包列表 即运行 apt update 并没有更新软件 xff0c 而是相当 win
  • C++服务器开发100个知识要点C++RAII惯用法

    最初的写法 在笔者刚学习服务器开发的时候 xff0c 公司给笔者安排了一个练习 xff1a 在 Windows 系统上写一个 C 43 43 程序 xff0c 用该程序实现一个简单的服务 xff0c 在客户端连接上来时 xff0c 给客户端
  • 人工智能知识全面讲解: 人脸识别技术

    早在40年前 xff0c 图像识别领域就有很多关于人脸识别的研究 但是在当时 xff0c 传统算法在普通图像识别中已经很难取得良好的识别效果 xff0c 更何况还要从人脸 中提取更加细微的特征 在很长一段时间里 xff0c 人脸识别主要存在
  • Redis入门完整教程:缓存的收益和成本

    图11 1左侧为客户端直接调用存储层的架构 xff0c 右侧为比较典型的缓存层 43 存储层架构 xff0c 下面分析一下缓存加入后带来的收益和成本 收益如下 xff1a 加速读写 xff1a 因为缓存通常都是全内存的 xff08 例如Re