当你遇到Bug该怎么办?

2023-05-16

一、问题复现

稳定复现问题才能正确的对问题进行定位、解决以及验证。一般来说,越容易复现的问题越容易解决。

1.1 模拟复现条件

有的问题存在于特定的条件下,只需要模拟出现问题的条件即可复现。对于依赖外部输入的条件,如果条件比较复杂难以模拟可以考虑程序里预设直接进入对应状态。

1.2 提高相关任务执行频率

例如某个任务长时间运行才出现异常则可以提高该任务的执行频率。

1.3 增大测试样本量

程序长时间运行后出现异常,问题难以复现,可以搭建测试环境多套设备同时进行测试。

二、问题定位

缩小排查范围,确认引入问题的任务、函数、语句。

2.1 打印LOG

根据问题的现象,在抱有疑问的代码处增加LOG输出,以此来追踪程序执行流程以及关键变量的值,观察是否与预期相符。

2.2 在线调试

在线调试可以起到和打印LOG类似的作用,另外此方法特别适合排查程序崩溃类的BUG,当程序陷入异常中断(HardFault,看门狗中断等)的时候可以直接STOP查看call stack以及内核寄存器的值,快速定位问题点。

2.3 版本回退

使用版本管理工具时可以通过不断回退版本并测试验证来定位首次引入该问题的版本,之后可以围绕该版本增改的代码进行排查。

2.4 二分注释

二分注释即以类似二分查找法的方式注释掉部分代码,以此判断问题是否由注释掉的这部分代码引起。

具体方法为将与问题不相干的部分代码注释掉一半,看问题是否解决,未解决则注释另一半,如果解决则继续将注释范围缩小一半,以此类推逐渐缩小问题的范围。

2.5 保存内核寄存器快照

Cortex M内核陷入异常中断时会将几个内核寄存器的值压入栈中,如下图:

 

我们可以在陷入异常中断时将栈上的内核寄存器值写入RAM的一段复位后保留默认值的区域内,执行复位操作后再从RAM将该信息读出并分析,通过PC、LR确认当时执行的函数,通过R0-R3分析当时处理的变量是否异常,通过SP分析是否可能出现栈溢出等。

三、问题分析处理

结合问题现象以及定位的问题代码位置分析造成问题的原因。

3.1 程序继续运行

3.1.1 数值异常

3.1.1.1 软件问题

1、数组越界

写数组时下标超出数组长度,导致对应地址内容被修改。如下:

 

此类问题通常需要结合map文件进行分析,通过map文件观察被篡改变量地址附近的数组,查看对该数组的写入操作是否存在如上图所示不安全的代码,将其修改为安全的代码。

2、栈溢出

0x20001ff8g_val
0x20002000栈底
…………栈空间
0x20002200栈顶

如上图,此类问题也需要结合map文件进行分析。假设栈从高地址往低地址增长,如果发生栈溢出,则g_val的值会被栈上的值覆盖。

出现栈溢出时要分析栈的最大使用情况,函数调用层数过多,中断服务函数内进行函数调用,函数内部申明了较大的临时变量等都有可能导致栈溢出。

解决此类问题有以下方法:

  • 在设计阶段应该合理分配内存资源,为栈设置合适的大小;

  • 将函数内较大的临时变量加”static”关键字转化为静态变量,或者使用malloc()动态分配,将其放到堆上;

  • 改变函数调用方式,降低调用层数。

3、判断语句条件写错

 

判断语句的条件容易把相等运算符“==”写成赋值运算符“=”导致被判断的变量值被更改,该类错误编译期不会报错且总是返回真。

建议将要判断的变量写到运算符的右边,这样错写为赋值运算符时会在编译期报错。还可以使用一些静态代码检查工具来发现此类问题。

4、同步问题

例如操作队列时,出队操作执行的过程中发生中断(任务切换),并且在中断(切换后的任务)中执行入队操作则可能破坏队列结构,对于这类情况应该操作时关中断(使用互斥锁同步)。

5、优化问题

 

如上图程序,本意是等待irq中断之后不再执行foo()函数,但被编译器优化之后,实际运行过程中flg可能被装入寄存器并且每次都判断寄存器内的值而不重新从ram里读取flg的值,导致即使irq中断发生foo()也一直运行,此处需要在flg的申明前加“volatile”关键字,强制每次都从ram里获取flg的值。

3.1.1.2 硬件问题

1、芯片BUG

芯片本身存在BUG,在某些特定情况下给单片机返回一个错误的值,需要程序对读回的值进行判断,过滤异常值。

2、通信时序错误

例如电源管理芯片Isl78600,假设现在两片级联,当同时读取两片的电压采样数据时,高端芯片会以固定周期通过菊花链将数据传送到低端芯片,而低端芯片上只有一个缓存区.

如果单片机不在规定时间内将低端芯片上的数据读走那么新的数据到来时将会覆盖当前数据,导致数据丢失。此类问题需要仔细分析芯片的数据手册,严格满足芯片通信的时序要求。

3.1.2 动作异常

3.1.2.1 软件问题

1、设计问题

设计中存在错误或者疏漏,需要重新评审设计文档。

2、实现与设计不符

代码的实现与设计文档不相符需要增加单元测试覆盖所有条件分支,进行代码交叉review。

3、状态变量异常

例如记录状态机当前状态的变量被篡改,分析该类问题的方法同前文数值异常部分。

3.1.2.2 硬件问题

1、硬件失效

目标IC失效,接收控制指令后不动作,需要排查硬件。

2、通信异常

与目标IC通信错误,无法正确执行控制命令,需要使用示波器或逻辑分析仪去观察通信时序,分析是否发出的信号不对或者受到外部干扰。

3.2 程序崩溃

3.2.1 停止运行

3.2.1.1 软件问题

1、HardFault

以下情况会造成HardFault:

  • 在外设时钟门未使能的情况下操作该外设的寄存器;

  • 跳转函数地址越界,通常发生在函数指针被篡改,排查方法同数值异常;

  • 解引用指针时出现对齐问题:

以小端序为例,如果我们声明了一个强制对齐的结构体如下:

 

地址0x000000000x000000010x000000020x00000003
变量名Val0Val1_lowVal1_highVal2
0x120x560x340x78

此时a.val1的地址为0x00000001,如果以uint16_t类型去解引用此地址则会因为对齐问题进入HardFault,如果一定要用指针方式操作该变量则应当使用memcpy()。

2、中断服务函数中未清除中断标志

中断服务函数退出前不正确清除中断标志,当程序执行从中断服务函数内退出后又会立刻进入中断服务函数,表现出程序的“假死”现象。

3、NMI中断

调试时曾遇到SPI的MISO引脚复用NMI功能,当通过SPI连接的外设损坏时MISO被拉高,导致单片机复位后在把NMI引脚配置成SPI功能之前就直接进入NMI中断,程序挂死在NMI中断中。这种情况可以在NMI的中断服务函数内禁用NMI功能来使其退出NMI中断。

3.2.1.2 硬件问题

1、晶振未起振

2、供电电压不足

3、复位引脚拉低

3.2 .2 复位

3.2.2.1 软件问题

1、看门狗复位

除了喂狗超时导致的复位以外,还要注意看门狗配置的特殊要求,以Freescale KEA单片机为例,该单片机看门狗在配置时需要执行解锁序列(向其寄存器连续写入两个不同的值),该解锁序列必须在16个总线时钟内完成,超时则会引起看门狗复位。此类问题只能熟读单片机数据手册,注意类似的细节问题。

3.2.2.2 硬件问题

1、供电电压不稳

2、电源带载能力不足

四、回归测试

问题解决后需要进行回归测试,一方面确认问题是否不再复现,另一方面要确认修改不会引入其他问题。

五、经验总结

总结本次问题产生的原因及解决问题的方法,思考类似问题今后如何防范,对相同平台产品是否值得借鉴,做到举一反三,从失败中吸取经验。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

当你遇到Bug该怎么办? 的相关文章

  • E2E通信保护协议学习笔记

    E2E通信保护协议学习笔记 最近在做功能安全方面工作 xff0c 想了解E2E保护的问题 本文试着说明两个点 xff1a 功能安全需要考虑通信失效造成的影响 xff0c 因此E2E通信保护协议被提出 xff0c 以满足功能安全要求 xff1
  • TSN(时间敏感网络)介绍

    1 前言 TSN是时间敏感网络 xff08 Time Sensitive Network xff09 的英文缩写 xff0c 是IEEE 802 1 TSN工作组开发的一系列数据链路层协议规范的统称 xff0c 用于指导和开发低延迟 低抖动
  • 汽车OTA是个什么鬼?

    OTA xff1a Over the Air Technology 这描述的是手机吧 xff01 不过一开始的手机也是不可以直接OTA的 1997年之前所有汽车都是一个独立的机械个体 xff0c 一个方向盘 xff0c 一组踏板 xff0c
  • Hypervisor简介

    从头开始了解和使用Hypervisor xff08 第4部分 xff09 嘶吼 RoarTalk 回归最本质的信息安全 互联网安全新媒体 4hou com 根据 Hypervisor 的不同类型 xff0c 我们将虚拟化分为I 型和 II
  • 使用repo下载google源码,跟编译 ,遇到的错误解决

    最近一直想下载android的源码看看 xff0c 但是按照官方的文档下载 xff0c 遇到了问题 在执行的curl http commondatastorage googleapis com git repo downloads repo
  • S32V234 Linux yocto开发环境搭建

    一 主机环境 主机 xff1a Ubuntu 16 04 5 64bit S32V bsp infomation xff1a Bsp version auto yocto bsp 19 0 Linux Kernel version 4 13
  • NXP S32G2开发

    https blog csdn net bigzhizhi article details 123069235 导言 Linux BSP是一组源代码 xff0c 可用于为受支持的板卡创建U Boot引导加载程序 Linux内核映像 根文件系
  • 简单解决Please install the gcc make perl packages from your distribution问题 and VirtualBox安装增强功能失败

    在vbox安装ubantu增强功能 xff0c 出现下面这种情况 xff1a Please install the gcc make perl packages from your distribution 在这里插入图片描述 把需要的包都
  • 图形学就业方向&&春招部份纪实

    以下分几个模块分别介绍图形学 xff1a 1 图形学未来方向以及需要的技术 2 个人找工作情况 xff0c 具体介绍 图形学未来方向以及需要的技术 最近GAMES论坛搞了一个计算机图形学走进高校企业活动 xff0c 可以简称图形学招聘活动
  • SOME/IP 消息的布局

    1 SOME IP 消息的布局 前面两篇文章 SOME IP概述 分层结构及要实现的需求 SOME IP概述2 SOME IP的主要中间件功能 43 SOME IP报文PDU的封装 讲述了SOME IP的基本概念 需求及架构在以太网的4层模
  • 什么才是软件定义汽车?

    Software Defined Vehicle The Eclipse Foundation 导读 xff1a 移动出行时代 xff0c 汽车逐渐由机械驱动的硬件向软件驱动的电子产品过渡 xff0c 软件定义汽车趋势愈发明显 这一过程中汽
  • 一文看懂四大汽车总线:LIN、CAN、FlexRay、MOST

    前言 随着汽车工业的发展 xff0c 汽车各系统的控制逐步向自动化和智能化转变 xff0c 汽车电气系统变得日益复杂 传统的电气系统大多采用点对点的单一通信方式 xff0c 相互之间少有联系 xff0c 这样必然会形成庞大的布线系统 据统计
  • 浅谈ASIL: 汽车安全性等级

    目录 ASIL 表示汽车安全性等级 ASIL的确定 1 严重度 2 暴露度 3 可控度 ASIL 故障分析手段 ASIL 表示汽车安全性等级 这是 ISO 26262 标准针对道路车辆的功能安全性定义的风险分类系统 ASIL 根据伤害的可能
  • SOA中间件DDS(数据分发服务-Data Distribution Service)

    DDS协议 高可靠性 实时性 DDS Data Distribution Service for Real Time Systems xff0c 是一种面向实时系统的数据分发服务 xff0c 由OMG提供 xff0c 它的权威性可以证明该协
  • MQTT与DDS的比较

    MQTT VS DDS MQTT协议 三种服务质量 QoS xff1a 最多一次 Sender 发送的一条消息 xff0c Receiver 最多能收到一次 xff0c 也就是说 Sender 尽力向 Receiver 发送消息 xff0c
  • R-Car H3系列SOC芯片与R-Car M3 R8A77961JBP0BA区别

    RENESAS推出的 xff1a R Car H3 系列 SOC 芯片 R8A77951JA00BA xff03 YJ1 xff0c R Car M3 系列 SOC 芯片 R8A77960JA60BG xff03 YJ5 在内核上 xff1
  • PTP(IEEE1588),TSN时间同步方法

    本文首先简要介绍主流的时间同步方式GNSS xff0c NTP xff0c PTP 然后通过NTP和PTP对比 xff0c 解释PTP性能更优秀的原因 xff1b 并对算法公式进行了推导 0 Why need time synchroniz
  • AUTOSAR的四种功能安全机制

    虽然AUTOSAR不是一个完整的安全解决方案 xff0c 但它提供了一些安全机制用于支持安全关键系统的开发 本文用于介绍AUTOSAR支持的四种功能安全机制 xff1a 内存分区 xff08 Memory Partitioning xff0
  • libstdc++版本冲突的解决

    类似的问题出现在测试环境部署过程 xff0c 当编译完成该前端解析器后 xff0c 由于其依赖一些库文件 xff0c 包括系统库文件libstdc 43 43 so 6 及 libc so xff0c 这都是系统至关重要的库文件 但是不同系
  • 3D打印——CLIP技术之更快速更高表面质量

    论文 Gradient light video projection based stereolithography for continuous production of solid objects 阅读 论文共分为6个章节 xff1a

随机推荐

  • 汽车上DTC是什么意思?DTC是什么故障

    DTC的全称是 Diagnostic Trouble Code xff0c 意为诊断故障代码 如今 xff0c 汽车很多故障都是通过故障代码去诊断的 xff0c 例如汽车底盘检测 车身及附件检测 汽车污染物与噪声处理部件等相关检测等 目的旨
  • 人生算法——读书笔记

    跨越出生和运气 xff0c 实现富足和自由 用概率思维 做好决策 人生算法九段 广义而言大自然有两个重要的算法 xff0c 一个是进化 xff0c 一个是大脑 现实中我们虽然拼命思考 xff0c 但是极少思考自己的思考 围绕认知的飞轮 xf
  • Linux 上功能强大的网络工具 tcpdump 详解

    tcpdump 是用于捕获传入和传出流量的网络实用程序 这是您需要了解的有关在 Linux 上使用 tcpdump 的所有信息 Linux 配备了大量的网络实用程序可供选择 tcpdump 是一种功能强大的网络工具 xff0c 如果您需要对
  • 简析车载以太网TSN标准

    众所周知 xff0c 通用以太网是以非同步方式工作的 xff0c 网络中任何设备都可以随时发送数据 xff0c 因此在数据的传输时间上既不精准也不确定 xff1b 同时 xff0c 广播数据或视频等大规模数据的传输 xff0c 也会因网络负
  • 英伟达发布的系统级芯片orin

    本文为英伟达全面分析的第七篇文章 xff0c 关注英伟达在今年会大规模交付的Orin系统级芯片 Orin 是亚特兰蒂斯神话第一任统治者 xff0c 海王Altan的儿子 Orin一经发布 xff0c 便成为众多车企争抢装车的对象 本文重点探
  • Shell内置命令之exit的语法与实例

    系统中是有exit命令的 用于退出当前用户的登录状态 但是在 Shell 脚本中 exit 语句是用来退出当前脚本的 下面这篇文章主要给大家介绍了关于Shell内置命令之exit的语法与实例 需要的朋友可以参考下 https www jb5
  • SHELL编程

    一 变量 1 shell 脚本基础知识 编译型语言 xff1a 如 c语言 解释型语言 xff1a shell 脚本 shell脚本的本质 xff1a shell命令的有序集合 2 shell 编程的基本过程 基本过程分为三步 xff1a
  • 浅谈TC8数据链路层测试

    当今时代 xff0c 智能汽车已成为一个炙手可热的话题 xff0c 各种先进汽车电子技术蓬勃发展 xff0c 比如自动驾驶 V2X OTA 这些新技术的背后都离不开车载以太网通信技术的支持 浅谈TC8数据链路层测试 知乎 其中数据链路层实现
  • 100 道 Linux 常见面试题 建议收藏,慢慢读~

    本文共 2W 43 字 xff0c 分别从 Linux 概述 磁盘 目录 文件 安全 语法级 实战 文件管理命令 文档编辑命令 磁盘管理命令 网络通讯命令 系统管理命令 备份压缩命令等方面拆解 Linux 常见面试问题 可以先收藏 xff0
  • patchelf 的功能以及使用 patchelf 修改 rpath 以解决动态库问题

    低版本 libc 库运行高版本 libc 库编译的程序 https blog csdn net Longyu wlz article details 108023117 在这篇博客中我描述了使用 patchelf 来修改动态库链接器的方法
  • Alpha-beta 算法

    Alpha beta 算法是棋类游戏中最常用的 xff0c 也是最基础的剪枝方法 xff0c 要说Alpha beta 算法 就得先说下max min博弈树 算法 xff0c 就是模拟电脑下子 xff0c 要下在对电脑最优的地方 xff0c
  • 关于SOME/IP的理解

    1 总体说明 如上图所示为标准的网络七层架构 xff0c SOME IP Scalable service Oriented MiddlewarE over IP xff0c 即 运行于IP之上的可伸缩的面向服务的中间件 他在系统中其实就是
  • Win10常用快捷键

  • 推荐3篇 如何建立自己的知识体系

    如何构建自己的知识体系 xff1f 看这一篇就够了 xff01 如何把学到的知识系统化 xff1f 怎么才能把知识系统化的学透彻呢 xff1f 这3步可以帮助你 什么是知识体系 xff1f 为什么要搭建知识体系 xff1f 如何搭建知识体系
  • 《富有的习惯》

    目录 关于作者 关于本书 核心内容 前言 第一部分 第二部分 习惯觉察表 结语 富人和穷人的区别是什么 xff1f 富人永远更谨慎 关于作者 本书作者是托马斯 科里 xff0c 他是一位美国著名的会计师和注册理财规划师 xff0c 开办了一
  • 演讲培训——荣耀时刻

    如何用惊艳的开场白引爆项目路演的全场 xff1f 如何用精准而生动的语言表达有力的商务主题 xff1f 如何层层递进环环相扣地展开内容 xff1f 如何打造激励人心激发行动的演讲结尾 xff1f 如何让观点有内在 xff0c 让语言有逻辑
  • QNX的调度算法

    作为一个硬实时操作系统 xff0c QNX是一个基于优先级抢占的系统 这也导致其基本调度算法相对比较简单 因为不需要像别的通用操作系统考虑一些复杂的 公平性 xff0c 只需要保证 优先级最高的线程最优先得到 CPU 就可以了 基本调度算法
  • 葡萄酒品酒的四个步骤

    第一步 xff1a 观色 将酒杯举到白色背景之上 xff0c 然后倾斜约45 xff0c 仔细观察酒液中心的颜色 边缘色泽 澄清度 通常而言 xff0c 红葡萄酒的越浅 xff0c 年份越老 xff1b 白葡萄酒的颜色越浅 xff0c 年份
  • 高通骁龙 8155 到底有什么魔力?

    高通骁龙8155采用安卓系统 xff0c 兼容性更好 xff0c APP的数量也就相当多 xff0c 硬件方面 xff0c 这颗芯片最高支持3个4K屏或4个2K屏 xff0c 4个麦克风6颗摄像头 xff0c 还有WiFi6 5G 蓝牙5
  • 当你遇到Bug该怎么办?

    一 问题复现 稳定复现问题才能正确的对问题进行定位 解决以及验证 一般来说 xff0c 越容易复现的问题越容易解决 1 1 模拟复现条件 有的问题存在于特定的条件下 xff0c 只需要模拟出现问题的条件即可复现 对于依赖外部输入的条件 xf