机器人定位误差标定模型

2023-05-16

概述

以工业机器人为基础,构建柔性制造单元或柔性生产线,实现产品自动化、柔性化、智能化生产必将成为现代制造发展的重点。
新型产业环境下,工业机器人的应用范围将越来越广泛、作业任务也将越来越精细复杂,为满足现代制造技术及工艺的发展需求,工业机器人必须具备高精度、高柔性、自我维护和感应识别等特性。然而,现有机器人技术发展水平与现实的应用之间尚存在较大的差距:绝对定位精度低,(在重复性应用中,采用示教的方法,较高的重复定位精度可以胜任。对于重复定位精度±0.05mm的机器人系统,其绝对定位精度一般只到2-3mm。)缺乏感知识别能力。
高精度机器人的应用领域:汽车制造领域,航空航天制造领域,电子电器行业,军工制造领域。
工业机器人误差补偿技术可以分为在线补偿和离线补偿两种方式。在线补偿是指借助激光跟踪仪、立体视觉测量系统、空间测量定位系统 w MPS(workspace Measuring and Positioning System)、力或加速度计等实时测量设备对机器人末端位姿进行高精度测量,得到末端位姿误差,并通过误差补偿算法直接对末端执行器的位姿进行修正。离线补偿也称为误差标定技术,是通过预先测量机器人多个关节构形下的末端位姿误差,辨识机器人运动学参数的准确值,或建立机器人空间定位误差库、温度误差库等,并将补偿数据预置在控制算法中,从而提高机器人实际作业时的位姿精度。
在线补偿使用外部高精度测量设备来引导机器人提高运动精度。
离线补偿通过建立离线的位姿误差模型,并将补偿数据预置到控制算法中。

机器人运动学模型

完备的运动学模型应具备三点特征:完整性(模型具备充足的参数来表达所有误差因素)、连续性(模型为几何参数的连续函数)、极小性(模型无冗余参数存在)。
DH模型,在相邻两关节轴线平行时DH模型存在奇异性48,
在相邻连杆坐标系中引入附加旋转参数的MDH模型。在相邻轴线垂直时出现奇异状态。49,50
S模型51,利用6个参数直接描述相邻连杆坐标系之间的位姿关系,但失去了连续性。
CPC模型,引入了冗余参数因子52,53。
POE模型,基于旋量理论的指数积表达式,利用机器人零位下各转轴方向对其运动学进行描述,该模型满足 Roth 提出的完美模型的3 点特征,但是在实际应用中实现比较复杂。
末端位姿测量:球杆仪,经纬仪,全站仪,三坐标测量机,摄影测量系统,激光跟踪仪等。

机器人运动学模型标定:

建立了kuka机器人的DH模型。设置不同的机械臂固有参数,由关节转角得到仿真末端位姿(模拟高精度测量实验数据)。由关节转角和末端位姿使用优化的方法(线性最小二乘,非线性最小二乘,扩展卡尔曼滤波法80)得到机械臂运动学模型参数。辨识到运动学模型参数的实际值后,通过修改机器人运动学模型参数的理论值可以直接计算出某关节构型对应的准确末端位姿。在实现机器人定位误差补偿时,需要根据辨识到的参数使用机器人逆运动学计算关节角度。机器人运动学模型标定的商业应用:商业化产品dynacal,caliware,motocal,rocal等标定软件。可以实现包括机器人本体标定,机器人温度补偿,工具校准,夹具对其等功能。

机器人非模型标定:

基于曲线拟合,空间网格,神经网络。对局部空间内位姿误差进行估计与补偿。84
曲线拟合,需要使用优化的方法计算曲线中各个参数。
多项式拟合步骤:选择多项式类型,决定函数大小,使用实验数据估计系数。生成改进的关节空间或者在标定空间的误差修正。

空间网格:

基于空间插值的定位误差标定是通过一定步长将机器人作业空间划分为一系列的立方体网格,然后测量各个网格节点处的位姿误差。对于工作空间中的任意目标点,可以用这个点周围的8个点通过加权平均的方式求出。基本步骤为:网格划分,误差测量,空间插值。

神经网络:

首先以关节旋转角及其对应的位姿误差分别作为输入输出来训练神经网络,利用训练好的神经网络计算机器人在不同关节构型处对应的末端定位误差,最终通过补偿机器人关节转角的方法来提高机器人绝对定位精度。或者以某一关节旋转角下的理想位姿及理想位姿和实际位姿的误差分别作为输入输出来训练神经网络。我认为最实用的是输入实际位姿,输出偏差,以便能根据实际要到的位置调整指令位置。
基于神经网络的误差标定方法避免了复杂的建模过程,克服了参数辨识的不足。

模型自标定:

基于固定约束的模型自标定,不同于几何误差标定模型,操作流程可以实现自动化,可以实现在线标定。
使用机器人视觉测量系统,从不同的位姿测量工作环境中某一个固定点,基于固定点约束建立几何误差自标定模型,辨识几何参数。

手眼标定:

Visp实现手眼标定的步骤:
获取多组基座和末端执行器的位姿关系和对应的图片
从图像计算目标相对于相机的位姿。
由多对基-末和相-目标关系计算出相机相对于机械臂末端的位姿。

后面会陆续给出这些模型的具体实现代码。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

机器人定位误差标定模型 的相关文章

  • mac配置jmeter

    一 步骤 1 安装jdk1 8版本 xff0c 因为jmeter是基于java环境运行的 2 安装jmeter5 x版本 二 安装jdk 1 下载jdk Java Downloads Oracle 2 下载好之后安装 xff0c 全部下一步
  • 操作系统(四):动态链接与静态链接的区别

    在回答这个问题之前希望大家大概了解一个文件编译的过程 xff0c 比如一个C文件在编译成功后文件夹里的文件会有什么变化 xff0c 大家可以先去创建一个helloworld c的文件 xff0c 观察其编译后的变化 那么问题来了 面试官经常
  • 【OpenVINS】(一)ZUPT

    参考 xff1a Measurement Update Derivations Zero Velocity Update 在典型的自主汽车场景中 xff0c 传感器系统将在停止灯处变得静止 xff0c 其中动态物体 xff08 例如交叉路口
  • OpenVINS与MSCKF_VIO RK4积分对比

    VIO系统在使用IMU测量值进行状态预测时 xff0c 需要将连续时间的微分方程离散化为差分方程 xff0c 离散化的本质是积分 xff0c 根据数值积分近似程度不同 xff0c 常用的有欧拉法 中点法和四阶龙格库塔法等 xff0c Ope
  • 全盘拷贝linux系统,转移至另一硬盘

    首先制作ubuntu启动盘 xff0c 选择try ubuntu进入live ubuntu系统 查看需拷贝硬盘盘符 span class token function sudo span span class token function
  • EKF SLAM

    EKF 方法是解决 SLAM 问题的一种经典方法 xff0c 其应用依赖于运动模型和观测模型的高斯噪声假设 在 SLAM 问题首次提出不久后 xff0c Smith 和 Cheesman 及 Durrant Whyte对机器人和路标间的几何
  • 如何将立创EDA中的元器件的原理图/封装和3D模型导入AD的库中

    如何将立创EDA中的元器件的原理图 封装和3D模型导入AD的库中 工具 xff1a AD 立创EDA专业版 fusion360 或其他3D软件 导入原理图 封装 在立创商城复制所需元器件的编号 打开立创EDA标准版或专业版 xff0c 这里
  • Xshell 提示 “要继续使用此程序,您必须应用最新的更新或使用新版本“的解决方案

    要想解决Xshell提示更新最新版问题 有两种方案 方案一 手动修改系统时间 步骤如下 右键右下角时间 弹出如下窗口 2 选中 调整日期 时间 A 并点击 弹出如下页面 更改时间 更改成之前的年份 如下图 更改成功后 再打开相应的应用 Xs
  • 2020.2.22 排位赛 G - Bucket Brigade(BFS)

    Bucket Brigade 题面 题目分析 BFS模板题 代码 span class token macro property span class token directive keyword include span span cl
  • Canal入门(二)

    Canal入门 xff08 二 xff09 canal kafka quickStart 1 基本说明 canal 1 1 1版本之后 默认支持将canal server接收到的binlog数据直接投递到MQ 目前默认支持的MQ系统有 ka
  • PID调节三个参数的作用

    1 比例调节作用 xff1a 按比例反应系统的偏差 系统一旦出现了偏差 比例调节立即产生调节作用用以减少偏差 比例作用大 可 以加快调节 能迅速反应误差 xff0c 从而减小稳态误差 但是 xff0c 比例控制不能消除稳态误差 过大的比例
  • (centos7)docker+jenkins运行python自动化

    目录 一 实现思路 二 环境准备 1 在liunx上安装docker 2 docker安装jenkins 三 访问前设置 四 配置jenkins容器 五 jenkins插件安装 1 安装git 2 安装docker 3 html Publi
  • OJ在线编程常见输入输出练习

    OJ在线编程常见输入输出练习 4 a 43 b 4 输入描述 xff1a 输入数据包括多组 每组数据一行 每行的第一个整数为整数的个数n 1 lt 61 n lt 61 100 n为0的时候结束输入 接下来n个正整数 即需要求和的每个正整数
  • js中数组与集合的相互转化

    数组 gt 集合 var a 61 1 2 3 4 5 5 var set 61 new Set a console log set 1 2 3 4 5 集合 gt 数组 var set 61 new Set set add 1 set a
  • Linux make/Makefile详解

    会不会写makefile xff0c 从侧面说明了一个人是否具备完成大型工程的能力 一个工程中的源文件不计数 xff0c 其按类型 功能 模块分别放在若干个目录中 xff0c makefile定义了一系列的 规则来指定 xff0c 哪些文件
  • 大疆H20系列吊舱,录制的视频含义

  • 写算法的方法

    写算法步骤 xff1a xff08 以下方法 xff0c 都是老生常谈 但是非常简单有用 xff09 数据结构 xff08 所有的算法都是基于数据结构的操作 所有算法都是针对数据结构的属性进行操作 列出所有的属性 xff0c 写算法逐项修改
  • Windows系统下QT+OpenCasCAD仿真开发

    背景 最近开发了一个六自由度机械臂调姿平台的控制软件 xff0c 集成了API激光跟踪仪和KUKA机器人 xff0c 实现了根据产品的测量位姿驱动仿真环境中模型并且实现模型间的碰撞检测 其中KUKA机器人的控制可以参考笔者以前的博客 xff
  • 飞控IMU姿态估计流程

    飞控中使用加速度计 xff0c 陀螺仪 xff0c 磁罗盘进行姿态估计算法流程 step1 xff1a 获取陀螺仪 xff0c 加速度计 xff0c 磁罗盘的原始数值 step2 xff1a 陀螺仪 xff0c 加速度计减去固定的偏移后得到

随机推荐

  • 图拓扑关系可视化的qt实现

    前言 最近在做数据可视化的相关工作 xff0c 包括曲线图 xff0c 航迹图 xff0c 图结构 xff0c 树结构等 其中树结构相关的工作笔者以前曾经做过 xff0c 可以参考笔者以前的博客 qt自定义树形控件之一和qt自定义树形控件之
  • 基于qwt3D 的3D航迹图的实现

    前言 使用qt实现三维空间直角坐标系中的航迹实时绘制网上很难查到资料 在qt下实现3D绘图通常实现方式有OpenGL VTK qwt3d QtDataVisualization等 Qcharts QCustomPlot只支持2D绘图 这里给
  • 树莓派4b连接RealSense T265

    使用的是树莓派4 8G版本 准备连接RealSense T265的双目相机 T265目前官方编译好的的只有Ubuntu16和18 其他的系统版本需要自己编译realsense驱动 安装ubuntu20 10 https ubuntu com
  • Dockerfile文件解释

    一 先来看一个简单的 Dockerfile 这个Dockerfile作用是打一个python3项目环境 FROM python 3 alpine WORKDIR app ADD app RUN pip3 install r requirem
  • 一文读懂BLOB算法

    算法执行效果 相关参考资料 看着玩的 BLOB算法简述 https blog csdn net icyrat article details 6594574 话说这老哥写的也太 简 了吧 完全口水话 把blob算法说的很神秘 说什么把blo
  • Sobel算法优化 AVX2与GPU

    国庆假期 一口气肝了10篇博客 基本上把最近的成果都做了遍总结 假期最后一天 以一个比较轻松的博客主题结束吧 这次是Sobel算法的AVX2优化 执行效果 sobel算法的原理 使用如下的卷积核 c 硬写 span class token
  • 随机Hough直线算法的改进

    背景介绍 随机Hough直线算法相比Hough直线算法 xff0c 算法效率会有提高 xff0c 但仍不能满足工程需求 因此提出使用生长的随机Hough直线算法 该算法对随机Hough直线算法进行改造 xff0c 在随机选点转到Hough空
  • MATLAB编写的读取.mat文件数据并画曲线图的gui程序

    matlab编写的读取sd卡数据的gui程序 界面截图 xff1a 打开文件界面 xff1a 导入数据后截图 xff1a 是不是高端大气上档次 xff0c 不要急 xff0c 慢慢往下看 xff0c 后面更精彩 xff0c 代码会贴出来的
  • px4飞控位置估计lpe移植到vs

    本文主要内容 px4飞控的位置估计有两种方式 xff0c 一是inav xff0c 二是lpe xff0c 用到的传感器用加速度计 xff0c 磁场传感器 xff0c gps xff0c 超声 xff0c 激光 xff0c 气压 xff0c
  • 常见的信号平滑处理方法

    本文介绍了常见的信号平滑处理方法 xff1a xff08 一阶滤波 xff0c 互补滤波 xff0c 卡尔曼滤波 xff09
  • PX4代码学习系列博客(1)——开发环境配置

    写在前面 虽然有很多关于px4博客 xff0c 但还是想自己亲手写 xff0c 一来记录自己的学习过程 xff0c 以备将来复习 xff0c 二来方便后来者参考学习 xff0c 好多西当然要大家分享 关于px4飞控程序的博客 xff0c 我
  • PX4代码学习系列博客(3)——px4固件目录结构和代码风格

    写在前面 px4不是普通的单片机程序 xff0c 其中没有main函数 它实际上是一个操作系统 xff0c 上面运行着很多应用程序 xff08 类比windows xff09 xff0c 比如姿态解算 xff0c 位置解算 xff0c 姿态
  • PX4代码学习系列博客(5)——在px4中添加自己的模块

    怎么在px4中添加自己的模块 在 px4固件目录结构和代码风格 这一节 xff0c 曾经说过NuttX是一个实时的嵌入式系统 xff0c 上面可以像windows那样运行程序 那既然是应用程序 xff0c 那我们应该也能写一些可以在Nutt
  • PX4代码学习系列博客(6)——offboard模式位置控制代码分析

    分析offboard模式的代码需要用到以下几个模块 local position estimator mavlink mc pos control mc att control mixer 程序数据走向 mavlink 一般的offboar
  • selenium安装

    一 安装webdriver 1 下载安装包 下载地址 xff1a CNPM Binaries Mirror 注意 xff1a 下载版本应与自己的chrome的大版本一致 chrome版本查看 xff0c 设置 gt 关于chrome xff
  • 基于惯性轮倒立摆原理的自行车

    背景 自平衡车有很多种 xff0c 其中一种是利用惯性轮倒立摆原理 xff0c 早在2003年 xff0c 日本的村田顽童就已经问世 xff0c 它采用的就是惯性轮倒立摆原理 后来其他研究组织和个人纷纷效仿 xff0c 制作出了五花八门的基
  • 二维码的特征定位和信息识别

    二维码的特征定位和信息识别 背景介绍 视觉的方法可以用来估计位置和姿态 最容易想到的是在目标上布置多个容易识别的特征 xff0c 这样使用opencv相机标定和 相机畸变矫正 轮廓提取 solvepnp来获取目标相对于相机的位姿 在实际使用
  • 学生作业信息管理系统

    一 xff0e 引言 1 1编写目的 首先 xff0c 软件系统的设计报告可以出用户提出的模糊需求分析出具体的工程需求 xff0c 并转化为数据流图 xff0c 程序流程图 xff0c 模块图 xff0c 数据库设计等软件设计必要的底层步骤
  • NVIDIA显卡驱动版本,CUDA版本,cudnn版本之间关系及如何选择

    要配置NVIDIA显卡的CUDA和cudnn xff0c 各种版本之间的依赖关系以及与其他使用GPU的库版本兼容一直没有弄明白 xff0c 最近经过多次卸载重装 xff0c 终于成功配置好了显卡计算环境 xff0c 于是把各个驱动程序和库之
  • 机器人定位误差标定模型

    概述 以工业机器人为基础 xff0c 构建柔性制造单元或柔性生产线 xff0c 实现产品自动化 柔性化 智能化生产必将成为现代制造发展的重点 新型产业环境下 xff0c 工业机器人的应用范围将越来越广泛 作业任务也将越来越精细复杂 xff0