链路mtu

2023-05-16

常常见到交换机和网卡说明中提到支持Jumbo Frame,但我一直对以太网的Jumbo Frame(巨帧)如何使用不太理解,今日在网上找到2则现摘录下来,相信看了以后大家会有收获。 ---- 这是一种厂商标准的超长帧格式,专门为千兆以太网而设计,目前还没有获得IEEE标准委员会的认可。以太网标准的最大帧长度为1518字节,而Jumbo Frame的长度各厂商有所不同,从9000字节~64000字节不等。采用Jumbo Frame能够令千兆以太网性能充分发挥,使数据传输效率提高50%~100%。在网络存储的应用环境中,Jumbo Frame更具有非同寻常的意义。
----Jumbo Frame需要在相互通讯的2个通讯端口(交换机端口或网卡端口)上同时支持,而且与以前的以太网产品不兼容,因此主要会应用于千兆主干的端口之间以及服务器端口接入到网络主干的链路。交换机把Jumbo Frame格式的数据转发向不兼容Jumbo Frame的端口时应进行帧格式的转换,即把Jumbo Frame帧格式的数据转换成标准以太网的帧格式,从而保证其正常工作。相反,从不兼容Jumbo Frame的端口向支持Jumbo Frame的端口转发数据时,交换机可以把多个标准以太网帧合并成超长Jumbo Frame帧,从而提高传输效率。 ---- 由于Jumbo Frame没有成为国际标准,目前只有部分厂商支持这种帧格式。不过随着以太网向千兆、万兆的发展,必然要诞生1种超长帧格式,因而Jumbo Frame从厂商标准转变为国际标准的可能性非常大。
---- 巨型帧 ( Jumbo Frame )面临的问题 (转载自安恒)

 通常人们都认为Jumbo Frame(巨型帧)是一个相对简单的技术,应该被广泛的应用在局域网中,但是情况并非如此。
 应该说Jumbo 帧在一些领域里是非常有用的,它是有意设计为加速大文件传输服务的。以太网标准定义的最大帧长度为1518字节,这样一个大的文件就需要被切碎成为若干块,放到多个以太网帧中。而每个数据块传输的时候都会引入帧头和尾的开销。倘若能够用一个大的帧完成文件的传输,则会减少很多帧的开销,提高网络的利用率和传输速率。通常人们认为,这一技术最大的应用瓶颈是在于至今没有标准化。
 但是,有些人不这么看,许多人提出了超长帧的以下缺点:它们可能会成为融合网络的障碍。如果人们在网络上传送语音或其他对延迟敏感的内容,不需要有妨碍这些对延迟敏感数据的超长帧传输。有人举例说,超长帧会造成延迟,一旦一个‘大家伙’在线路上传送,它会较长时间占用线路,阻止其他人使用线路,从而造成延迟。
 另一位读者提到超长帧可以在一条与其他网络隔离的网络中使用,因此它们不会妨碍其他传输流。存储区域网也许就是这样的一个例子。
 但是首先,使用超长帧可能不再是一种优势。来自大学的两位用户说,为了了解超长帧是否能实际提高性能,他们测试了超长帧。一位用户谈道:“经过全面的测试后,我们得到的结论是:在使用现代的PC和千兆网卡时,性能提高得很少。超长帧在过去年代里的主要优势是减小高中断率对计算机的影响。但是,3-GHz CPU具有处理千兆流量的充足能力,网卡和驱动程序不再需要每一个数据包都中断一次。我们认为超长帧理论上看是一个不错的想法,但是在实际中它在千兆位时用处不大。10G以太网可能是另一个问题。

MTU最大传输单元,这个最大传输单元实际上和链路层协议有着密切的关系,EthernetII帧的结构DMAC+SMAC+Type+Data+CRC由于以太网传输电气方面的限制,每个以太网帧都有最小的大小64bytes最大不能超过1518bytes,对于小于或者大于这个限制的以太网帧我们都可以视之为错误的数据帧,一般的以太网转发设备会丢弃这些数据帧。

由于以太网EthernetII最大的数据帧是1518Bytes这样,刨去以太网帧的帧头(DMAC目的MAC地址48bit=6Bytes+SMAC源MAC地址48bit=6Bytes+Type域2bytes)14Bytes和帧尾CRC校验部分4Bytes那么剩下承载上层协议的地方也就是Data域最大就只能有1500Bytes这个值我们就把它称之为MTU。

PPPoE所谓PPPoE就是在以太网上面跑PPP协议,有人奇怪了,PPP协议和Ethernet不都是链路层协议吗?怎么一个链路层跑到另外一个链路层上面去了,难道升级成网络层协议了不成。其实这是个误区:就是某层协议只能承载更上一层协议。

为什么会产生这种奇怪的需求呢?这是因为随着宽带接入(这种宽带接入一般为Cable Modem或者xDSL或者以太网的接入),因为以太网缺乏认证计费机制而传统运营商是通过PPP协议来对拨号等接入服务进行认证计费的.

PPPoE带来了好处,也带来了一些坏处,比如:二次封装耗费资源,降低了传输效能等等,这些坏处俺也不多说了,最大的坏处就是PPPoE导致MTU变小了以太网的MTU是1500,再减去PPP的包头包尾的开销(8Bytes),就变成1492。

UDP 包的大小就应该是 1492 - IP头(20) - UDP头(8) = 1464(BYTES)
TCP 包的大小就应该是 1492 - IP头(20) - TCP头(20) = 1452(BYTES)

目前大多数的路由设备的MTU都为1500
我对上面的理解是:如果我们定义的TCP和UDP包小于1452,1464,那么我们的包在IP层就不用分包了,这样传输过程中就避免了在IP层组包发生的错误。如果使用UDP协议,如果IP层组包发生错误,那么包就会被丢弃,UDP不保证可靠传输。但是TCP发生组包错误时,该包会被重传,保证可靠传输。所以,我们在用Socket编程时,包的大小设定不一定非要小于1400,UDP协议要求包小于64K,TCP没有限定。

总结:

我们设定包的大小对于UDP和TCP协议是不同的,关键是看系统性能和网络性能,网络是状态很好的局域网,那么UDP包分大点,提高系统的性能。不好,就分小于1464,这样可以减低丢包率。对于TCP来说,这个就要靠经验了,因为,TCP丢包可以自动重传,分大了,系统性能提高了,分包和错误重组可能会耗费时间,使传送时间延长,分小了,系统性能又降低了。

由于以太网EthernetII最大的数据帧是1518Bytes,除去以太网帧的帧头(DMAC目的MAC地址 48bit=6Bytes+SMAC源MAC地址48bit=6Bytes+Type域2bytes)14Bytes和帧尾CRC校验部分4Bytes (这个部份有时候大家也把它叫做FCS),那么剩下承载上层协议的地方也就是Data域最大就只能有1500Bytes,这个值我们就把它称之为MTU。

这个MTU就是网络层协议非常关心的地方,因为网络层协议比如IP协议会根据这个值来决定是否把上层传下来的数据进行分片。就好比一个盒子没法装下一大块面包,我们需要把面包切成片,装在多个盒子里面一样的道理。当两台远程PC互联的时候,它们的数据需要穿过很多的路由器和各种各样的网络媒介才能到达对端,网络中不同媒介的MTU各不相同,就好比一长段的水管,由不同粗细的水管组成(MTU不同 )通过这段水管最大水量就要由中间最细的水管决定。

  1. IP MTU

对于网络层的上层协议而言(我们以TCP/IP协议族为例),网络层IP协议会检查每个从上层协议下来的数据包的大小,并根据本机MTU的大小决定是否作“分片”处理。分片最大的坏处就是降低了传输性能,本来一次可以搞定的事情,分成多次搞定,所以在网络层更高一层(就是传输层)的实现中往往会对此加以注意!有些高层因为某些原因就会要求我这个面包不能切片,我要完整地面包,所以会在IP数据包包头里面加上一个标签:DF(Donot Fragment)。这样当这个IP数据包在一大段网络(水管里面)传输的时候,如果遇到MTU小于IP数据包的情况,转发设备就会根据要求丢弃这个数据包,然后返回一个错误信息给发送者。这样往往会造成某些通讯上的问题,不过幸运的是大部分网络链路MTU都是等于1500或者大于1500。

对于UDP协议而言,这个协议本身是无连接的协议,对数据包的到达顺序以及是否正确到达不甚关心,所以一般UDP应用对分片没有特殊要求。对于TCP协议而言就不一样了,这个协议是面向连接的协议,对于TCP协议而言它非常在意数据包的到达顺序以及是否传输中有错误发生。所以有些TCP应用对分片有要求—不能分片(DF)。

  1. MSS

MSS是最大传输大小的缩写,它是TCP协议里面的一个概念。如下图1-1所示:

图1-1 TCP头部

注:URG等参数指的是 ACK URG PSH SIN FIN RST等参数

在TCP报文中 MSS的位置就在选项的位置,根据RFC1323和RFC793规定,选项中内容有很多种,MSS是其中的一种,用kind=2表示;kind=1表示无操作,kind=4、5、6、7称为选择ACK及回显选项,但是由于回显选项已经被时间戳选项取代,同时,目前定义的选择ACK选项仍未定论,也没有包括在RFC1323中,所以具体代表什么含义还无定论。在实际网络数据传输,要求MSS+20TCP包头 +20 IP包头不大于MTU。MSS在TCP报文中是可选项,不是必选项,换句话说,MSS是可协商项,而且在协商过后,该选项内容可以改变,也可以没有;在协商MSS时,一般是建立TCP连结的两端发送Syn标志报文时互相通报,然后选取最小MSS作为双方的约定,如果双方都不通报或有一方不通报。

MSS就是TCP数据包每次能够传输的最大数据分段。为了达到最佳的传输效能,TCP协议在建立连接的时候通常要协商双方的MSS值,这个值TCP协议在实现的时候往往用MTU值代替(需要减去IP数据包包头的大小20Bytes和TCP数据段的包头20Bytes),所以往往MSS为1460。通讯双方会根据双方提供的MSS值得最小值确定为这次连接的最大MSS值。

  1. 区别及联系

由前面的叙述可知:MTU是一个二层的概念,以太网最大的mtu就是1500(它是不包含二层头部的,加上头部应该为1518 bytes),当然这里说的是很常规的情况,也有些server,比如server 2008,出来的就是jumbo frame了,我们在这里讨论常规情况。IP MTU是一个三层概念,它包含了三层头部及所有载荷,根据下层为上层服务的,上层基于下层才能做进一步的扩展的原则,尽管IP MTU的变化范围很大(68-65535),但也不得不照顾以太网MTU的限制,说白了就是ip对以太网的妥协。MSS是TCP里面的一个概念,它是TCP数据包每次能够传输的最大数据分段,不包含包头部分,它与IP MTU满足如下关系:IP MTU=MSS+20bytes(IP包头)+20bytes(TCP包头)。当然,如果传输的时候还承载有其他协议,还要加些包头在前面,简言之,mtu就是总的最后发出去的报文大小,MSS就是需要发出去的数据大小,比如PPPoE,就是在以太网上承载PPP协议(点到点连接协议),它包括6bytes的PPPoE头部和2bytes的PPP协议ID号,此时,由于以太网的MTU值为1500,所以上层PPP负载数据不能超过1492字节,也就是相当于在PPPOE环境下的MTU是1492字节,MSS是1452字节。

  1. MTU问题解决方法

通常情况下,MTU不匹配会表现为两种故障情况:

ping大包时不通无法访问某些站点

在这种情况下,通常有两种解决方法:

修改用户端MTU值(不推荐使用)修改传输路由所有设备MTU值,确保路径MTU值大于用户发送的IP报文的长度,以保证用户报文不会因为超过设备的MTU值被丢弃。主要要考虑下面几种情况:

· 对于纯IP网络,要保证:路径MTU值>最大用户报文长度

· 对于纯MPLS网络(没有VPN业务),要保证路径MTU值>最大用户报文+一层标签长度(4)

· 对于三层VPN业务,要保证:路径MTU值>最大用户报文+两层标签长度(8);

· 对于二层VPN业务,要保证:路由MTU值>最大用户报文长度+两处标签长度(8)+二层帧头长度(18)。

值得注意的是:fastethernet接口不能调整MTU,所以说在有些设备中,使用MTU命令不能解决问题的。此外,更改MTU后,如果IGP是OSPF的话,不同的MTU可能会造成OSPF 停留在INIT状态,此时需要将两端的MTU调整一致。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

链路mtu 的相关文章

  • FDC系列电容传感器及FDC2214使用要点

    陈拓 2021 02 21 2021 02 21 1 概述 电容式传感是一种低功耗 低成本且高分辨率的非接触式感测技术 xff0c 适用于从接近检测 手势识别到远程液位感测的各项应用 电容式传感系统中的传感器可以采用任意金属或导体 xff0
  • 卫星数据高动态捕获

    一 xff0c 高动态导航接收终端的现状 早期的扩频通信系统由于受到集成电路水平的限制 xff0c 多采用串行搜索技术 由于串行捕获速度慢 xff0c 耗时长不能满足高动态等环境对速度的要求 xff0c 随着数字信号处理等技术的发展 xff
  • 基于ZYNQ平台的powerlink接口平台搭建

    1 xff0c 搭建powerlink接口所需硬件平台 xff1a Zynq ZC702 board used as openPOWERLINK MN AVNET expander board AES FMC ISMNET G Linux
  • 雷达测距测速测角基本原理

    由雷达发射机产生的电磁波经收发开关后传输给天线 xff0c 由天线将此电磁波定向辐射于大气中 电磁波在大气中以近光速传播 xff0c 如目标恰好位于定向天线的波束内 xff0c 则它将要截取一部分电磁波 目标将被截取的电磁波向各方向散射 x
  • 信号处理之脉冲压缩

    一 xff0c 脉冲压缩的背景 随着飞行技术的飞速发展 xff0c 对雷达的作用距离 分辨能力 测量精度和单值性等性能指标提出越来越高的要求 测距精度和距离分辨力对信号形式的要求是一致的 xff0c 主要取决于信号的频率结构 xff0c 为
  • MTI动目标指示和MTD动目标检测

    MTI 是一种频域滤波器 radar主席的ppt 中说到 xff0c 它是对多组脉冲回波的同一个距离单元加权求和 xff0c 得到一个结果 xff1b 也就是多个输入一个输出 xff1b 相当于一个高通滤波器 xff0c 用来抑制固定目标和
  • 复旦微开发过程中遇到的问题总结(二)

    一 xff0c 将bin文件放到flash中0地址处能识别并且启动吗 xff1f xlinx的放在0地址处可以识别启动 xff0c 我尝试复旦微这个没反应 要用procise生成 xff0c 第一个必须是FSBL out 只能是procis
  • 用链表实现fifo功能缓存和拼接数据功能

    fifo h ifndef LIST QUEUE H define LIST QUEUE H include lt stdio h gt include lt stdlib h gt include 34 xil types h 34 in
  • zynq bootgen配置启动

    一 xff0c Zynq 7000 SoC 启动头文件 0x00 0x1F Arm 矢量表 由 Bootgen 使用虚拟矢量表填充 xff08 Arm 操作代码 0xEAFFFFFE xff0c 即用于捕获未初始化矢量的 branch to
  • 制作四个文件启动的镜像

    一 环境搭建 xff1a vivado2018 3 xff0c petalinux2018 3 xff0c 1 petalinux环境设置 所使用的编译环境需要使用petalinux这个软件 xff0c 第五章Petalinux 的安装 里

随机推荐

  • ubuntu虚拟机更改镜像源(中科大或者阿里云镜像源)

    ubuntu虚拟机更改镜像源 xff08 中科大或者阿里云镜像源 xff09 1 进入终端后 xff0c 编辑源列表文件 xff1a 输入 xff1a sudo vim etc apt sources list 后输入 xff1a i 2
  • 海康威视客户端iVMS-4200连接NVR

    海康威视客户端 iVMS 4200 连接 NVR 陈拓 2021 07 30 2021 08 01 1 概述 iVMS 4200 客户端是一款与网络监控设备配套使用的综合应用软件 xff0c 可满足用户多方面需求 xff0c 如设备管理 人
  • 匿名上位机使用方法分享--总体介绍

    不知不觉 xff0c 匿名科创已经走过了7个年头 xff0c 这里首先要感谢大家这么久以来对匿名的支持与帮助 xff01 匿名为了提供给大家一个更好的调试工具 xff0c 始终在维护开发我们的匿名上位机软件 xff0c 7年时间 xff0c
  • 匿名上位机使用方法分享--高级收码

    匿名上位机总体介绍移步 xff1a https blog csdn net wangjt1988 article details 83684188 本文视频介绍 xff1a https www bilibili com video av35
  • 匿名上位机使用方法分享--波形显示

    匿名上位机总体介绍移步 xff1a https blog csdn net wangjt1988 article details 83684188 波形显示可以说是上位机的功能重点 xff0c 是各种调试 数据分析的有力助手 xff0c 下
  • 匿名数传使用方法分享

    目录 欢迎使用匿名数传模块匿名数传的特点硬件介绍使用介绍指示灯连接匿名飞控建议 欢迎使用匿名数传模块 大家调试各种设备时 xff0c 一般用什么方式呢 xff1f 相比答案大多是上位机 43 串口的方式 如果您还在使用usb转串口芯片然后连
  • 匿名科创--X2212版到手飞套件介绍

    匿名科创到手飞X2212版 xff0c 使用朗宇X2212系列无刷电机 xff0c 配合特制的6mm正反螺纹螺旋桨安装柱 xff0c 可以同时兼容8寸普通螺旋桨和9寸9450自锁螺旋桨 优点 xff1a 可直接使用普通8寸螺旋桨 xff0c
  • vscode最皮实的C++格式化的配置方法

    1 安装C C 43 43 2 在vscode界面 xff0c 按 34 Ctrl 43 34 进入设置界面 xff0c 搜索Format 3 设置保存文件时 xff0c 按格式对代码排版 4 向下拉 xff0c 找到下图选项 xff0c
  • 通过openmv生成apriltag标签

    Apriltag官网提供的tag图片分辨率很低 xff0c 完全无法使用 xff0c 通过openmv生成apriltag标签 生成方法如下 xff1a openmv IDE的下载与安装 openmv官方提供了各种版本的IDE xff0c
  • 串口传输数据错位 的几种解决办法

    1 代码优化等级 2 使用晶振 晶振自身产生时钟信号 xff0c 为各种微处理芯片作时钟参考 无源晶振需要用CPU内部的振荡器信号差接线麻烦石英 gt 陶瓷有源晶振是一个完整的振荡器信号好接线简单灵活性较差 3 使用降低传输速率 xff1f
  • sip 认证分析

    SIP类似Http协议 其认证模式也一样 Http协议 xff08 RFC 2616 xff09 规定可以采用Basic模式和摘要模式 xff08 Digest schema xff09 RFC 2617 专门对两种认证模式做了规定 RFC
  • MicroPython移植

    MicroPython移植 1 目标板 stm32f407zgt6 2 下载移植准备 micropython源码 arm交叉编译工具 sudo apt get install git sudo apt get install gcc arm
  • 了解ESP32睡眠模式及其功耗

    陈拓翻译 2022 05 30 2022 05 30 原文 https lastminuteengineers com esp32 sleep modes power consumption 毫无疑问 xff0c ESP32是许多WiFi
  • 浅谈布隆过滤器

    什么是布隆过滤器 布隆过滤器是一种数据结构 xff0c 比较巧妙的概率型数据结构 xff08 probabilistic data structure xff09 xff0c 特点是高效地插入和查询 xff0c 可以用来告诉你 某样东西一定
  • 浅谈CGI基本原理和底层基本实现

    历史来由 xff1a 早期的Web服务器 xff0c 只能响应浏览器发来的HTTP静态资源的请求 xff0c 并将存储在服务器中的静态资源返回给浏览器 随着Web技术的发展 xff0c 逐渐出现了动态技术 xff0c 但是Web服务器并不能
  • linux的两种共享内存方式---mmap和shmat区别

    linux中的两种共享内存 一种是我们的IPC通信System V版本的共享内存 xff0c 另外的一种就是我们今天提到的存储映射I O xff08 mmap函数 xff09 在说mmap之前我们先说一下普通的读写文件的原理 xff0c 进
  • tcp发送窗口(滑动窗口)、拥塞窗口

    TCP发送窗口拥塞窗口试题分析 题目一 xff1a 来源2015年408计算机综合 试题链接 xff1a https www nowcoder com questionTerminal 3241441c88f04ab58585a187716
  • mktime函数性能分析

    mktime函数性能分析 1月 02 2019 in Linux环境高级编程 mktime函数性能分析 mktime是一个将break down时间 struct tm 转化为日历时间 time t 的转换函数 它的转换与struct tm
  • iptables原理和防火墙主要命令使用场景

    https www zsythink net archives 1764 朱双印的个人日志 xff0c 写的非常的通俗易懂 xff0c 好文章 https blog csdn net u011277123 article details 8
  • 链路mtu

    常常见到交换机和网卡说明中提到支持Jumbo Frame xff0c 但我一直对以太网的Jumbo Frame xff08 巨帧 xff09 如何使用不太理解 xff0c 今日在网上找到2则现摘录下来 xff0c 相信看了以后大家会有收获