java序列化

2023-05-16

引言

将 Java 对象序列化为二进制文件的 Java 序列化技术是 Java 系列技术中一个较为重要的技术点,在大部分情况下,开发人员只需要了解被序列化的类需要实现 Serializable 接口,使用 ObjectInputStream 和 ObjectOutputStream 进行对象的读写。然而在有些情况下,光知道这些还远远不够,文章列举了笔者遇到的一些真实情境,它们与 Java 序列化相关,通过分析情境出现的原因,使读者轻松牢记 Java 序列化中的一些高级认识。

回页首

文章结构

本文将逐一的介绍几个情境,顺序如下面的列表。

  • 序列化 ID 的问题
  • 静态变量序列化
  • 父类的序列化与 Transient 关键字
  • 对敏感字段加密
  • 序列化存储规则

列表的每一部分讲述了一个单独的情境,读者可以分别查看。

回页首

序列化 ID 问题

情境:两个客户端 A 和 B 试图通过网络传递对象数据,A 端将对象 C 序列化为二进制数据再传给 B,B 反序列化得到 C。

问题:C 对象的全类路径假设为 com.inout.Test,在 A 和 B 端都有这么一个类文件,功能代码完全一致。也都实现了 Serializable 接口,但是反序列化时总是提示不成功。

解决虚拟机是否允许反序列化,不仅取决于类路径和功能代码是否一致,一个非常重要的一点是两个类的序列化 ID 是否一致(就是 private static final long serialVersionUID = 1L)。清单 1 中,虽然两个类的功能代码完全一致,但是序列化 ID 不同,他们无法相互序列化和反序列化。


清单 1. 相同功能代码不同序列化 ID 的类对比

				
 package com.inout; 

 import java.io.Serializable; 

 public class A implements Serializable { 

	 private static final long serialVersionUID = 1L; 

	 private String name; 
	
	 public String getName() 
	 { 
		 return name; 
	 } 
	
	 public void setName(String name) 
	 { 
		 this.name = name; 
	 } 
 } 

 package com.inout; 

 import java.io.Serializable; 

 public class A implements Serializable { 

	 private static final long serialVersionUID = 2L; 
	
	 private String name; 
	
	 public String getName() 
	 { 
		 return name; 
	 } 
	
	 public void setName(String name) 
	 { 
		 this.name = name; 
	 } 
 } 
  

序列化 ID 在 Eclipse 下提供了两种生成策略,一个是固定的 1L,一个是随机生成一个不重复的 long 类型数据(实际上是使用 JDK 工具生成),在这里有一个建议,如果没有特殊需求,就是用默认的 1L 就可以,这样可以确保代码一致时反序列化成功。那么随机生成的序列化 ID 有什么作用呢,有些时候,通过改变序列化 ID 可以用来限制某些用户的使用。

特性使用案例

读者应该听过 Façade 模式,它是为应用程序提供统一的访问接口,案例程序中的 Client 客户端使用了该模式,案例程序结构图如图 1 所示。


图 1. 案例程序结构
图 1. 案例程序结构 

Client 端通过 Façade Object 才可以与业务逻辑对象进行交互。而客户端的 Façade Object 不能直接由 Client 生成,而是需要 Server 端生成,然后序列化后通过网络将二进制对象数据传给 Client,Client 负责反序列化得到 Façade 对象。该模式可以使得 Client 端程序的使用需要服务器端的许可,同时 Client 端和服务器端的 Façade Object 类需要保持一致。当服务器端想要进行版本更新时,只要将服务器端的 Façade Object 类的序列化 ID 再次生成,当 Client 端反序列化 Façade Object 就会失败,也就是强制 Client 端从服务器端获取最新程序。

回页首

静态变量序列化

情境:查看清单 2 的代码。


清单 2. 静态变量序列化问题代码

				
 public class Test implements Serializable {

	private static final long serialVersionUID = 1L;

	public static int staticVar = 5;

	public static void main(String[] args) {
		try {
			//初始时staticVar为5
			ObjectOutputStream out = new ObjectOutputStream(
					new FileOutputStream("result.obj"));
			out.writeObject(new Test());
			out.close();

			//序列化后修改为10
			Test.staticVar = 10;

			ObjectInputStream oin = new ObjectInputStream(new FileInputStream(
					"result.obj"));
			Test t = (Test) oin.readObject();
			oin.close();
			
			//再读取,通过t.staticVar打印新的值
			System.out.println(t.staticVar);
			
		} catch (FileNotFoundException e) {
			e.printStackTrace();
		} catch (IOException e) {
			e.printStackTrace();
		} catch (ClassNotFoundException e) {
			e.printStackTrace();
		}
	}
}
  

清单 2 中的 main 方法,将对象序列化后,修改静态变量的数值,再将序列化对象读取出来,然后通过读取出来的对象获得静态变量的数值并打印出来。依照清单 2,这个 System.out.println(t.staticVar) 语句输出的是 10 还是 5 呢?

最后的输出是 10,对于无法理解的读者认为,打印的 staticVar 是从读取的对象里获得的,应该是保存时的状态才对。之所以打印 10 的原因在于序列化时,并不保存静态变量,这其实比较容易理解,序列化保存的是对象的状态,静态变量属于类的状态,因此 序列化并不保存静态变量

回页首

父类的序列化与 Transient 关键字

情境:一个子类实现了 Serializable 接口,它的父类都没有实现 Serializable 接口,序列化该子类对象,然后反序列化后输出父类定义的某变量的数值,该变量数值与序列化时的数值不同。

解决要想将父类对象也序列化,就需要让父类也实现Serializable 接口。如果父类不实现的话的,就 需要有默认的无参的构造函数。在父类没有实现 Serializable 接口时,虚拟机是不会序列化父对象的,而一个 Java 对象的构造必须先有父对象,才有子对象,反序列化也不例外。所以反序列化时,为了构造父对象,只能调用父类的无参构造函数作为默认的父对象。因此当我们取父对象的变量值时,它的值是调用父类无参构造函数后的值。如果你考虑到这种序列化的情况,在父类无参构造函数中对变量进行初始化,否则的话,父类变量值都是默认声明的值,如 int 型的默认是 0,string 型的默认是 null。

Transient 关键字的作用是控制变量的序列化,在变量声明前加上该关键字,可以阻止该变量被序列化到文件中,在被反序列化后,transient 变量的值被设为初始值,如 int 型的是 0,对象型的是 null。

特性使用案例

我们熟悉使用 Transient 关键字可以使得字段不被序列化,那么还有别的方法吗?根据父类对象序列化的规则,我们可以将不需要被序列化的字段抽取出来放到父类中,子类实现 Serializable 接口,父类不实现,根据父类序列化规则,父类的字段数据将不被序列化,形成类图如图 2 所示。


图 2. 案例程序类图
图 2. 案例程序类图 

上图中可以看出,attr1、attr2、attr3、attr5 都不会被序列化,放在父类中的好处在于当有另外一个 Child 类时,attr1、attr2、attr3 依然不会被序列化,不用重复抒写 transient,代码简洁。

回页首

对敏感字段加密

情境:服务器端给客户端发送序列化对象数据,对象中有一些数据是敏感的,比如密码字符串等,希望对该密码字段在序列化时,进行加密,而客户端如果拥有解密的密钥,只有在客户端进行反序列化时,才可以对密码进行读取,这样可以一定程度保证序列化对象的数据安全。

解决:在序列化过程中,虚拟机会试图调用对象类里的 writeObject 和 readObject 方法,进行用户自定义的序列化和反序列化,如果没有这样的方法,则默认调用是 ObjectOutputStream 的 defaultWriteObject 方法以及 ObjectInputStream 的 defaultReadObject 方法。用户自定义的 writeObject 和 readObject 方法可以允许用户控制序列化的过程,比如可以在序列化的过程中动态改变序列化的数值。基于这个原理,可以在实际应用中得到使用,用于敏感字段的加密工作,清单 3 展示了这个过程。


清单 3. 静态变量序列化问题代码

				
 private static final long serialVersionUID = 1L;

	private String password = "pass";

	public String getPassword() {
		return password;
	}

	public void setPassword(String password) {
		this.password = password;
	}

	private void writeObject(ObjectOutputStream out) {
		try {
			PutField putFields = out.putFields();
			System.out.println("原密码:" + password);
			password = "encryption";//模拟加密
			putFields.put("password", password);
			System.out.println("加密后的密码" + password);
			out.writeFields();
		} catch (IOException e) {
			e.printStackTrace();
		}
	}

	private void readObject(ObjectInputStream in) {
		try {
			GetField readFields = in.readFields();
			Object object = readFields.get("password", "");
			System.out.println("要解密的字符串:" + object.toString());
			password = "pass";//模拟解密,需要获得本地的密钥
		} catch (IOException e) {
			e.printStackTrace();
		} catch (ClassNotFoundException e) {
			e.printStackTrace();
		}

	}

	public static void main(String[] args) {
		try {
			ObjectOutputStream out = new ObjectOutputStream(
					new FileOutputStream("result.obj"));
			out.writeObject(new Test());
			out.close();

			ObjectInputStream oin = new ObjectInputStream(new FileInputStream(
					"result.obj"));
			Test t = (Test) oin.readObject();
			System.out.println("解密后的字符串:" + t.getPassword());
			oin.close();
		} catch (FileNotFoundException e) {
			e.printStackTrace();
		} catch (IOException e) {
			e.printStackTrace();
		} catch (ClassNotFoundException e) {
			e.printStackTrace();
		}
	}
  

在清单 3 的 writeObject 方法中,对密码进行了加密,在 readObject 中则对 password 进行解密,只有拥有密钥的客户端,才可以正确的解析出密码,确保了数据的安全。执行清单 3 后控制台输出如图 3 所示。


图 3. 数据加密演示
图 3. 数据加密演示 

特性使用案例

RMI 技术是完全基于 Java 序列化技术的,服务器端接口调用所需要的参数对象来至于客户端,它们通过网络相互传输。这就涉及 RMI 的安全传输的问题。一些敏感的字段,如用户名密码(用户登录时需要对密码进行传输),我们希望对其进行加密,这时,就可以采用本节介绍的方法在客户端对密码进行加密,服务器端进行解密,确保数据传输的安全性。

回页首

序列化存储规则

情境:问题代码如清单 4 所示。


清单 4. 存储规则问题代码

				
 ObjectOutputStream out = new ObjectOutputStream(
					new FileOutputStream("result.obj"));
	Test test = new Test();
	//试图将对象两次写入文件
	out.writeObject(test);
	out.flush();
	System.out.println(new File("result.obj").length());
	out.writeObject(test);
	out.close();
	System.out.println(new File("result.obj").length());

	ObjectInputStream oin = new ObjectInputStream(new FileInputStream(
			"result.obj"));
	//从文件依次读出两个文件
	Test t1 = (Test) oin.readObject();
	Test t2 = (Test) oin.readObject();
	oin.close();
			
	//判断两个引用是否指向同一个对象
	System.out.println(t1 == t2);
  

清单 3 中对同一对象两次写入文件,打印出写入一次对象后的存储大小和写入两次后的存储大小,然后从文件中反序列化出两个对象,比较这两个对象是否为同一对象。一般的思维是,两次写入对象,文件大小会变为两倍的大小,反序列化时,由于从文件读取,生成了两个对象,判断相等时应该是输入 false 才对,但是最后结果输出如图 4 所示。


图 4. 示例程序输出
图 4. 示例程序输出 

我们看到,第二次写入对象时文件只增加了 5 字节,并且两个对象是相等的,这是为什么呢?

解答:Java 序列化机制为了节省磁盘空间,具有特定的存储规则,当写入文件的为同一对象时,并不会再将对象的内容进行存储,而只是再次存储一份引用,上面增加的 5 字节的存储空间就是新增引用和一些控制信息的空间。反序列化时,恢复引用关系,使得清单 3 中的 t1 和 t2 指向唯一的对象,二者相等,输出 true。该存储规则极大的节省了存储空间。

特性案例分析

查看清单 5 的代码。


清单 5. 案例代码

				
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("result.obj"));
Test test = new Test();
test.i = 1;
out.writeObject(test);
out.flush();
test.i = 2;
out.writeObject(test);
out.close();
ObjectInputStream oin = new ObjectInputStream(new FileInputStream(
					"result.obj"));
Test t1 = (Test) oin.readObject();
Test t2 = (Test) oin.readObject();
System.out.println(t1.i);
System.out.println(t2.i);
  

清单 4 的目的是希望将 test 对象两次保存到 result.obj 文件中,写入一次以后修改对象属性值再次保存第二次,然后从 result.obj 中再依次读出两个对象,输出这两个对象的 i 属性值。案例代码的目的原本是希望一次性传输对象修改前后的状态。

结果两个输出的都是 1, 原因就是第一次写入对象以后,第二次再试图写的时候,虚拟机根据引用关系知道已经有一个相同对象已经写入文件,因此只保存第二次写的引用,所以读取时,都是第一次保存的对象。读者在使用一个文件多次 writeObject 需要特别注意这个问题。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

java序列化 的相关文章

  • STM32以中断的方式点亮LED小灯(标准库)

    STM32以中断的方式点亮LED小灯 xff08 标准库 xff09 文章目录 STM32以中断的方式点亮LED小灯 xff08 标准库 xff09 一 认识中断1 中断优先级 xff1a 2 中断嵌套 xff1a 3 中断执行流程4 中断
  • STM32 I2C_OLED显示汉字及屏幕滚动

    STM32 I2C OLED显示汉字及屏幕滚动 文章目录 STM32 I2C OLED显示汉字及屏幕滚动一 I2C以及AHT20温湿度传感器介绍二 用0 96寸OLED屏幕显示数据1 OLED介绍2 样例测试 三 汉字编码原理编码排序A0A
  • # FPGA编程入门

    FPGA编程入门 文章目录 FPGA编程入门一 1位全加器1 原理图1 1原理图1 2 全加器 2 verilog实现1位全加器2 1 代码2 2 编译 xff0c 查看RTL2 3 仿真实现 二 烧录三 4位全加器1 原理图实现4位全加器
  • 基于NIOS-II软核与verilog语言的流水灯实现

    基于NIOS II软核与verilog语言的流水灯实现 文章目录 基于NIOS II软核与verilog语言的流水灯实现1 实验目的2 实验设备3 实验内容4 软核设计4 1 新建一个工程4 2 Qsys 系统设计4 3 进行逻辑连接4 3
  • 处理器的大小端及位序

    大端Big Endian xff1a 数据的高字节存储到低位地址中 小端little Endian xff1a 数据的低字节存储到低位地址中 举例说明 xff1a 32位16进制数据为 61 0x12345678 xff0c 大端存储 地址
  • # VGA协议实践

    VGA协议实践 文章目录 VGA协议实践1 VGA介绍2 ALTPLL3 字模与图像生成4 ROM5 代码5 1 vga驱动模块5 2 显示数据生成模块5 3 按键消抖模块5 4 顶层模块5 5 TCL绑定引脚代码 6 效果7 总结8 参考
  • 串口扩展芯片

    串口扩展芯片 WK2124 实现SPI桥接 扩展4个增强功能串口 xff08 UART xff09 功能 扩展的子通道具备以下功能特点 xff1a 每个子通道UART的波特率 字长 校验格式可以独立设置 xff0c 最高可以提供2Mbps的
  • 手把手教你学51单片机_第 一、二章

    MCU CPU Flash 8kByte EMMC 64G 程序存储空间 xff0c 容量大 xff0c 掉电数据不丢失 RAM 512Byte DDR 4G 代码运行时中间变量的存取区 xff0c 无限次读写 xff0c 且读写速度快 x
  • 九天揽月带你玩转Ardupilot 的EKF2纸老虎

    目录 目录 摘要 1 kalman基础知识储备 2 ardupilot代码EKF流程学习 3 下面重点 逐一分析各个函数 摘要 本文主要记录自己学习ardupilot的ekf2代码的过程 xff0c 相信很多人想移植或者学习ekf2 看到眼
  • 在C++中定义全局变量时避免重复定义

    问题 xff1a 如何在C 43 43 中定义全局变量时避免重复定义呢 今天遇到问题 xff0c 全局变量重定义错误 xff0c 印象中记得要加extern xff0c 但是怎么都不对 xff0c 找资料后得到了解决方案 xff0c 记之
  • Ubuntu16.04下的FireFox浏览器无法查看网页视频的原因及解决方法

    Ubuntu16 04自带的firefox浏览器 在搭建好其他环境后 xff0c 我通过firefox去廖雪峰老师的官网查看python的教程 xff0c 发现无法打开网页中的视频 此时 xff0c 我又通过firefox浏览器中进入了腾讯
  • 【嵌入式模块】MPU6050

    文章目录 0 前言1 MPU6050概述1 1 基本概述1 2 引脚和常用原理图 2 代码3 姿态解算3 1 欧拉角 amp 旋转矩阵3 2 DMP 3 校正 0 前言 作为惯性传感器中入门级别的器件 xff0c MPU6050凭借它出色的
  • 7-13 出栈序列的合法性(25 分)(解决此类题的重要规律)

    给定一个最大容量为 M 的堆栈 xff0c 将 N 个数字按 1 2 3 N 的顺序入栈 xff0c 允许按任何顺序出栈 xff0c 则哪些数字序列是不可能得到的 xff1f 例如给定 M 61 5 N 61 7 xff0c 则我们有可能得
  • STL-map的简单用法(以及如何使用sort将map进行排序)

    map是不可排序的 xff0c 可是凡事都不是绝对的 xff0c 现在我就告诉大家如何将map进行简单的排序以及其的简单用法 一 map的常用方式 xff1a mapname clear xff09 xff1a 清空map mapname
  • 初识c语言的条件判断和循环。

    刚开始接触c语言的循环 xff0c 也许你会烦躁 xff0c 但是你只需要静下心来再看一遍 xff0c 你就会有更多的收获 xff0c 加油 xff01 xff08 凡事开头难 xff0c 迈过第一关 xff0c 你就是最棒的 xff01
  • digest鉴权

    摘要 式认证 xff08 Digest authentication xff09 是一个简单的认证机制 xff0c 最初是为HTTP协议开发的 xff0c 因而也常叫做HTTP摘要 xff0c 在RFC2671中描述 其身份验证机制很简单
  • 超长整型除法运算

    1017 A除以B 20分 本题要求计算 A B xff0c 其中 A 是不超过 1000 位的正整数 xff0c B 是 1 位正整数 你需要输出商数 Q 和余数 R xff0c 使得 A 61 B Q 43 R 成立 输入格式 xff1
  • 练习2-11 计算分段函数[2] (10分)

    本题目要求计算下列分段函数f x 的值 xff1a f2 11 注 xff1a 可在头文件中包含math h xff0c 并调用sqrt函数求平方根 xff0c 调用pow函数求幂 输入格式 输入在一行中给出实数x 输出格式 在一行中按 f
  • 习题4-2 求幂级数展开的部分和 (20分)

    已知函数e x可以展开为幂级数1 43 x 43 x 2 2 43 x 3 3 43 43 x k k 43 现给定一个实数x xff0c 要求利用此幂级数部分和求e x 的近似值 xff0c 求和一直继续到最后一项的绝对值小于0 0000
  • 练习7-10 查找指定字符 (15分)

    本题要求编写程序 xff0c 从给定字符串中查找某指定的字符 输入格式 xff1a 输入的第一行是一个待查找的字符 第二行是一个以回车结束的非空字符串 xff08 不超过80个字符 xff09 输出格式 xff1a 如果找到 xff0c 在

随机推荐

  • 习题9-5 通讯录排序 (20分)

    输入n个朋友的信息 xff0c 包括姓名 生日 电话号码 xff0c 本题要求编写程序 xff0c 按照年龄从大到小的顺序依次输出通讯录 题目保证所有人的生日均不相同 输入格式 输入第一行给出正整数n xff08 lt 10 xff09 随
  • C++提高运行速度

    ios base span class token punctuation span span class token punctuation span span class token function sync with stdio s
  • Java小项目(功能齐全)-停车场管理系统(中英文版)

    一 项目目的 xff1a 停车场管理系统 对停车场进行更系统的管理 xff0c 使整个过程更加高效有序 二 主要功能 xff1a 1 进入停车场 2 离开停车场 3 搜索信息 4 停车场当前车位明细查询 5 历史查询 三 附加功能 xff1
  • 应用YOLOV4 - DeepSort 实现目标跟踪

    转载自 https cloud tencent com developer article 1706259 本文分享利用yolov4 43 deepsort实现目标跟踪 xff0c 主要是讲解如何使用 xff0c 具体原理可以根据文中的参考
  • C++ char* 字符串处理、数组指针及传参

    编写函数 xff0c 将一个字符串 str 中指定的字符 ch 删去 xff08 包括重复出现的字符 xff09 xff0c 并编写主函 数进行调用测试 函数原型 void delchar char str char ch 输入 xff1a
  • STM32芯片写保护/解除写保护的方法

    一 写保护 1 目的 将Flash设置为写保护的目的 xff0c 是为了防止其他人通过J Link xff0c ULINK2等仿真器 xff0c 将Flash中的程序读取出来 设想一下 xff0c 你辛辛苦苦研发的产品 xff0c 别人通过
  • RG401 4G数传配置

    LP RG401为乐朴智能研发的一款4G无线数传模块 xff0c 支持接入移动 电信 联通运营商网络 xff0c 并且可以实现 3G 网络与 4G 网络之间的无缝切换 模块在运营商网络覆盖范围内可以实现点对点 一对多 多对多组网的不限距离数
  • 直流无刷电机与空心杯电机的区别

    浏览数 xff1a 132 日期 xff1a 2011 8 15 8 43 03 小 中 大 关闭注释 显示注释 直流无刷电机与空心杯电机的区别 空心杯电机CORELESS MOTOR xff0c 也叫无铁芯电机 xff0c 顾名思义 xf
  • 摘要认证

    1 摘要认证的改进 1 1 用摘要保护密码 摘要认证遵循 绝不通过网络发送密码 客户端发送一个 指纹 或者密码的 摘要 xff0c 是密码的不可逆扰码 1 2 单向摘要 z还要是对信息主体的浓缩 摘要是一个单向函数 xff0c 主要是将无线
  • 4路红外循迹模块使用教程

    4路红外循迹模块使用教程 文章目录 4路红外循迹模块使用教程模块详细信息 xff1a 模块接线模块使用相关代码 个人原创博客 xff1a 点击浏览 模块详细信息 xff1a 工作电压 xff1a DC 3 3V 5V 工作电流 xff1a
  • 循迹智能小车 循黑线 智能小车 红外循迹传感器 单片机

    循迹智能小车 循黑线 文章目录 循迹智能小车 循黑线硬件菜单硬件使用硬件组装程序设计前的理解程序代码 个人原创博客 xff1a 点我浏览 硬件菜单 单片机型号 xff1a STC16F40K128 4路红外循迹模块 小车底盘套件 xff08
  • 树莓派使用USB串口通信 CH340

    树莓派使用USB串口通信 CH340 个人博客原址 xff1a 树莓派使用USB串口通信 CH340 因为需要使用树莓派做自控方向的东西 xff0c 所以需要使用树莓派串口与各种外设进行通信 使用串口的话个人比较喜欢直接使用USB串口 xf
  • Python+OpenCV颜色识别 物体追踪

    Python 43 OpenCV颜色识别 物体追踪 对于颜色识别和imutils包的用法请浏览我得另一篇博客 xff1a OpenCV学习笔记 文章目录 Python 43 OpenCV颜色识别 物体追踪代码原理代码最终效果图 个人博客原址
  • OpenCV模板匹配识别图片中的数字

    OpenCV模板匹配识别图片中的数字 前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字 xff0c 然后把识别出来的数字输出到txt文件中 xff0c 如果识别失败则输出 读取失败 操作环境 xff1a OpenCV 4 1
  • Python + Skimage + OpenCV 使用技巧 实现连通区域染色

    Skimage库使用 前言 个人博客地址 最近发现Skimage库挺好用的 xff0c 可以和OpenCV搭配一起使用 xff0c 让图像处理更加灵活和方便 本博客只对Skimage库做简单的介绍 xff0c 细节使用的话推荐官网查看或百度
  • Atlas200DK环境配置

    Atlas200DK环境配置 个人博客网站 dd镜像安装 推荐使用dd镜像安装环境 xff0c 这种方式更快更方便 直接去网站下载需要版本的dd镜像 xff0c 然后利用Etcher烧录到sd卡中就行 参考链接 xff1a Atlas 20
  • Matlab搭建AlexNet实现手写数字识别

    Matlab搭建AlexNet实现手写数字识别 个人博客地址 文章目录 Matlab搭建AlexNet实现手写数字识别环境内容步骤准备MNIST数据集数据预处理定义网络模型定义训练超参数网络训练和预测 代码下载 环境 Matlab 2020
  • [DIY]自制一个有漂亮外观的90W 203H高频焊台 ---【up项目终于完结了】

    于2019年4月23日完成一体式多功能焊接工具的高频烙铁部分 xff1b https www bilibili com video av50217593 论坛帖子发于数码之家 https www mydigit cn forum php m
  • sklearn实现基于TF-IDF的KNN新闻标题文本分类

    sklearn实现基于TF IDF的KNN新闻标题文本分类 文章目录 sklearn实现基于TF IDF的KNN新闻标题文本分类数据集下载读取数据集中文分词去除停用词TF IDF算法提取文本特征KNN分类器的设计完整代码下载 数据集下载 点
  • java序列化

    引言 将 Java 对象序列化为二进制文件的 Java 序列化技术是 Java 系列技术中一个较为重要的技术点 xff0c 在大部分情况下 xff0c 开发人员只需要了解被序列化的类需要实现 Serializable 接口 xff0c 使用