校验和计算原理

2023-05-16

校验和思路

首先,IP、ICMP、UDP和TCP报文头都有检验和字段,大小都是16bit,算法基本上也是一样的。

在发送数据时,为了计算数据包的检验和。应该按如下步骤:

1、把校验和字段设置为0;

2、把需要校验的数据看成以16位为单位的数字组成,依次进行二进制反码求和;

3、把得到的结果存入校验和字段中

在接收数据时,计算数据包的检验和相对简单,按如下步骤:

1、把首部看成以16位为单位的数字组成,依次进行二进制反码求和,包括校验和字段;

2、检查计算出的校验和的结果是否为0;

3、如果等于0,说明被整除,校验和正确。否则,校验和就是错误的,协议栈要抛弃这个数据包。

虽然说上面四种报文的校验和算法一样,但是在作用范围存在不同:IP校验和只校验20字节的IP报头;而ICMP校验和覆盖整个报文(ICMP报头+ICMP数据);UDP和TCP校验和不仅覆盖整个报文,而且还有12个字节的IP伪首部,包括源IP地址(4字节)、目的IP地址(4字节)、协议(2字节)、TCP/UDP包长(2字节)。另外UDP、TCP数据报的长度可以为奇数字节,所以在计算校验和时需要在最后增加填充字节0(填充字节只是为了计算校验和,可以不被传送)。

校验和计算方法:

对一个无符号的数,先求其反码,然后从低位到高位,按位相加,有益处则向高位进1(和一般的二进制法则一样),若最高位有进位,则向最低位进1.

特点:关于二进制反码循环移位求和运算需要说明的一点是,先取反后相加与先相加后取反,得到的结果是一样的。

可结合性和可交换性

用A,B,C,D,E,F分别表示一个8位的二进制数(一个字节),用[A, B]这样的形式表示A*256+B,那么16位校验和可以用个如下形式给出

sum = [A,B]+’[C,D]+’[E,F];

其中, +’被表示二进制循环移位加法

可结合性:[A,B]+’[C,D]+’[E,F] = [A,B]+’([C,D]+’[E,F])
可交换性:[A,B]+’[C,D]+’[E,F] = [C,D]+’[A,B]+’[E,F]

字节自主性

[A,B]+’[C,D]+’[E,F] = [B,A]+’([D,C]+’[F,E])

由于若最高位有进位,则向最低位进1 这样的特性,第15位到0位进位,第7位向第8位进位,所以,整个求和结果是一样的。

并行计算

有些机器的字处理长度是16的倍数,这样可以提高他的计算速度,由于可结合行,那么32位机器可以[A,B,C,D]+’…进行32校验和。

为什么使用二进制反码循环移位加法呢?

我们知道,计算机中有原码,反码,补码,为什么要使用二进制反码来计算校验和呢,而不是直接使用原码或者是补码呢?

二进制反码循环移位加法求和优点

  1. 不依赖系统是大端小端。即无论你是发送方计算机或者接收方检查校验和时,都不要调用htons或者ntohs,直接通过上面的算法就可以得到正确的结果。这个问题你可以自己举个例子,用反码求和时,交换16位数的字节顺序,得到的结果相同,只是字节顺序相应地也交换了;而如果使用原码或者补码求和,得到的结果可能就不同。

  2. 计算和验证校验和比较简单、快递。

举例:

对于一串16进制数据:0001f203f4f5f6f7

这里写图片描述

正常顺序是将高8位*256之后,即将高位向左移动8位,加上低8位,交换顺序反之

可以明显得到,二进制反码循环移位加法与字节序无关。

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>

using namespace std;

void main(int argc, char *argv[])
{
    FILE *fp;
    char ch;
    unsigned char LowChar, HighChar;
    unsigned int count = 0, checksum = 0, byte = 0;
    unsigned long int sum = 0;


    //打开文件文本
    if ((fp = fopen("I:\\1.txt", "r")) == NULL)
    {
        printf("File cannot be opened!");
        system("pause");
        return;
    }
    printf("4位  --      sum\n");
    //从文本中读取字符
    while(1)
    {
        if ((ch = fgetc(fp))!=EOF)
        {
            count++;                        //从1开始计数
            if (ch != ' ')
            {
                //将一个16进制字符转化为整形
                if (ch >= '0' && ch <= '9')
                {
                    ch -= '0';
                }
                else if (ch >= 'a' && ch <= 'f')
                {
                    ch = ch-'a'+10;
                }
                else if(ch >= 'A' && ch <= 'F')
                {
                    ch = ch-'A'+ 10;
                }


                //计算8字节的累加值
                if (count%2 == 1)
                {
                    HighChar = ch << 4;     //作为一个字节的高四位
                }
                else
                {
                    LowChar = ch & 0x0f;    //作为一个字节的低四位
                    byte = HighChar|LowChar;//构成一个字节

                    //16位并行计算
                    if (count % 4 == 2)     //高8位与sum相加
                    {
                        sum += byte << 8;   
                    }
                    else if(count % 4 == 0) //低8位与sum相加
                    {
                        sum += byte;
                    }
                    printf("%04x -- %8lx    \n", byte, sum);
                }
            }
            else 
            {
                count--;
            }
        }
        else
        {
            break;
        }
    }

    //如果16位sum产生进位,将进位移加到低位
    if ( sum >> 16)
    {
        checksum = ~(long(sum>>16)+long(sum&0x0000ffff));
    }
    printf("\n移位后sum: %x", (long(sum>>16)+long(sum&0x0000ffff)));
    printf("\nCheckSum1: %x", checksum);
    //避免再次进位 
    checksum = checksum&0x0000ffff;

    //输出校验和
    printf("\nCheckSum: %x\n", checksum);

    system("pause");
}

运行结果

这里写图片描述

参考博客:传送门

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

校验和计算原理 的相关文章

随机推荐

  • STM32 串口超时中断+DMA接收不定长数据 比 空闲中断(IDLE)更加灵活、稳定(一)

    前言 xff1a 最近项目有使用串口接收大段不定长GPS数据的需求 xff0c 调试了很久 xff0c 终于找到一个比较好的解决办法 我觉得这个项目需求 xff08 高波特率 大段数据 不定长 xff09 十分典型 xff0c 所以在这里记
  • STM32串口通信(基于缓冲区)

    一 串口的初始化和中断设置 1 初始化GPIO xff1a 根据手册的8 1 11节 xff0c 我们可以找到下表 xff1a 在全双工的模式下 xff0c 发送引脚需要设置为推挽复用输出 xff0c 接收引脚则设置为浮空输入或带上拉的输入
  • STM32与C#上位机串口通信示例

    1 概述 串口通信是一种非常常用的通信方式 xff0c 本文首先介绍了串口硬件和协议的相关内容 xff0c 然后给出一个STM32与C 上位机通过串口通信的示例 2 串口介绍 参考这份文档 3 通信协议 为了方便数据传输 xff0c 定义了
  • 【转】23个常用的VSCode快捷键(动图演示)

    尽管我们经常使用 VS Code中的许多快捷方式 xff0c 但是我们有可能会忘记它们 这里用可视化制作了一些GIF xff0c 以便更好地记住它们 xff0c 希望对你有所帮助 VSCode中的每个命令也可以通过使用CTRL 43 SHI
  • HI3531编码h.264文件播放偏慢分析随笔

    现象 xff1a 编码h 264文件播放时 xff0c 无论帧率是30fps还是60fps xff0c 播放器显示帧率为25 fps 探索过程 xff1a cat proc umap venc 显示得知 xff0c 编码的的确是30fps和
  • C++ const用法详解

    const 是C 43 43 中常用的类型修饰符 常类型是指使用类型修饰符const说明的类型 xff0c 常类型的变量或对象的值是不能被更新的 目录 一 const的作用 二 const修饰普通类型的变量 三 const修饰指针变量 四
  • Source Insight 4.0打开一会就闪退 解决方法

    遇到Source Insight 4 0打开直接闪退 xff0c 请不要着急卸载 xff0c 在Source Insight 4 0快捷键上 xff0c 点击属性 xff0c 选择兼容性如下 xff1a
  • secureCRT连接ubuntu18.04

    1 安装ssh服务器 sudo apt get install openssh server 2 ssh服务器安装失败 错误提示 xff1a 下列软件包有未满足的依赖关系 xff1a openssh server 原因 xff1a 系统预置
  • STM32——USART串口通信与串口重定向

    简介 UART 通用异步收发传输器 xff08 Universal Asynchronous Receiver Transmitter xff0c 通常称 作 UART 它将要传输的资料在串行通信与并行通信之间加以转换 作为把并行输入信 号
  • 海思文件系统缺少文件himm 、i2c_read 、i2c_write 、ssp_read 、ssp_write

    原因 xff1a 海思根文件默认没有把himm i2c read i2c write ssp read ssp write工具集成在bin里 xff0c 但是在sdk中 解决办法 xff1a cd osdrv tools board reg
  • Ubuntu 18.04 Samba服务器的安装和配置(详解)

    具体步骤 xff1a 1 设置为静态IP xff1a 点击静态IP设置链接 2 更新当前软件 sudo apt get upgrade sudo apt get update sudo apt get dist upgrade 3 安装sa
  • C52单片机(AT89C52)—流水灯

    本文重点 xff1a C52流水灯代码编写 xff0c keil如何生存hex文件和proteus如何导入hex文件 1 打开keil xff0c 建立工程 xff0c 编写如下代码 include lt reg52 h gt includ
  • Hi3516EV200图像调优

    一 平台搭建 1 将Hi3516EV200 PQ V1 0 0 3 tgz放到nfs挂载目录下解压 xff0c 进入Hi3516EV200 PQ V1 0 0 3 执行StartControl sh 2 执行HiPQTools exe xf
  • Qt低延时/可集成嵌入的网络播放器 –soundTouch的使用

    背景 在观看直播的过程中 xff0c 保不齐网络出现卡的现象 xff0c 可能导致音频数据包累积了好几秒的数据 xff0c 这时候要么丢直接播放新的 xff0c 要么直接播放基音 xff0c soundTouch可以加速播放并不要变调 主要
  • 超低延时直播rtmp推流

    项目起源 xff1a 改项目主要是基于类qt av的模式 xff0c 快速集成 xff0c 将ffmpeg融入到插件当中 xff0c 并提供本地的音频设备和视频设备的查找输出 xff0c 并可以采集各类虚拟摄像头 xff0c 酷狗直播助手
  • minio 使用aws c++ 多线程下载

    C 43 43 下载 Minio 文件 下载 aws sdk cpp git clone recurse submodules GitHub aws aws sdk cpp AWS SDK for C 43 43 麒麟上编译AWS cmak
  • 拉流推流服务器设计

    背景 该服务器也是基于一个客户的需求产生的 客户那边使用的是腾讯的直播sdk xff0c 将不同终端的流推到腾讯云平台 xff0c 但是又想推到其他平台 xff0c 基于此需求 xff0c 该产品产生了 该产品通讯协议使用的是WebSock
  • 开发实现C++ RTMP直播推流sdk

    前言 rtmp即Real Time Messaging Protocol xff08 实时消息传输协议 xff09 的首字母缩写 xff0c 它是由Adobe公司提出的一种应用层的协议 xff0c 用来解决多媒体数据传输流的多路复用 xff
  • 开发实现C++ RTMP直播拉流播放器

    背景 该直播播放器的背景是来源于 拉流推流服务器设计 的一个分支 xff0c 它的重点是把拉下来的流进行解码显示播放 设计点 要实现跨平台 xff0c 目前支持的平台linux和windows要模块化和结构化可以拉各个平台的直播流要音视频同
  • 校验和计算原理

    校验和思路 首先 xff0c IP ICMP UDP和TCP报文头都有检验和字段 xff0c 大小都是16bit xff0c 算法基本上也是一样的 在发送数据时 xff0c 为了计算数据包的检验和 应该按如下步骤 xff1a 1 把校验和字