大小端知识

2023-05-16

大端和小端(Big-Endian和Little-Endian):

1) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。

2) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。

以多位字节数据0x12345678为例:
1)大端模式:

高地址 -----------------> 低地址

0x12  |  0x34  |  0x56  |  0x78

2)小端模式:

低地址 ------------------> 高地址

0x78  |  0x56  |  0x34  |  0x12

可以发现大端模式的存储和字符串的存储很相近,例如字符串std::string str[] = “asdfghjkl”

在调用时,str[0] = "a",即高位的a反而调用时下角标在最低

3)下面是两个具体例子:

16bit宽的数0x1234在Little-endian模式(以及Big-endian模式)CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址小端模式存放内容大端模式存放内容
0x400000x340x12
0x40010x120x34

32bit宽的数0x12345678在Little-endian模式以及Big-endian模式)CPU内存中的存放方式(假设从地址0x4000开始存内存地址

内存地址小端模式存放内容大端模式存放内容
0x40000x780x12
0x40010x560x34
0x40020x340x56
0x40030x120x78

 4)大端小端没有谁优谁劣,各自优势便是对方劣势:

小端模式 :强制转换数据不需要调整字节内容,1、2、4字节的存储方式一样。

即假设数据为0x1234时,因为低地址存的是最低位的4,高地址存的是最高位的1,所以转成四字节时只需要在前面高字节(即高地址)补位0x0000就可以了,而在大端模式时,由于高地址存的是低位数据,所以要先将数据的高低位取出,转换字节顺序,然后在高位前补0x0000,最后再将字节顺序转回,存储回去,变成0x34120000。在涉及到强制转换数据时就非常麻烦了。

大端模式 :符号位的判定固定为第一个字节,容易判断正负。

为什么会有大小端模式之分呢?

      这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

常见的字节序

一般操作系统都是小端,而通讯协议是大端的。

1 常见CPU的字节序

Big Endian : PowerPC、IBM、Sun

Little Endian : x86、DEC

ARM既可以工作在大端模式,也可以工作在小端模式。

2 常见文件的字节序

Adobe PS – Big Endian

BMP – Little Endian

DXF(AutoCAD) – Variable

GIF – Little Endian

JPEG – Big Endian

MacPaint – Big Endian

RTF – Little Endian

另外,Java和所有的网络通讯协议都是使用Big-Endian的编码。

如何进行转换

对于字数据(16位):

#define BigtoLittle16(A) (( ((uint16)(A) & 0xff00) >> 8) | (( (uint16)(A) & 0x00ff) << 8))  
#define BigtoLittle16(A) (( ((uint16)(A) & 0xff00) >> 8) | (( (uint16)(A) & 0x00ff) << 8)) 

对于双字数据(32位):

#define BigtoLittle32(A) ( (( (uint32)(A) & 0xff000000) >> 24) | \
                           (( (uint32)(A) & 0x00ff0000) >> 8)  | \ 
                           (( (uint32)(A) & 0x0000ff00) << 8)  | \ 
                           (( (uint32)(A) & 0x000000ff) << 24))  

#define BigtoLittle32(A) ((( (uint32)(A) & 0xff000000) >> 24) | \ 
                          (( (uint32)(A) & 0x00ff0000) >> 8)  | \ 
                          (( (uint32)(A) & 0x0000ff00) << 8)  | \ 
                          (( (uint32)(A) & 0x000000ff) << 24)) 

其实仔细观察可以发现big to little的代码实现和little to big的代码实现都是一样的,因为原理是相同的。

我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

在实际应用中,可能存在一方是大端模式,一方是下端模式的通信,例如IIC通信就是指定要先发送高位(小端是小端先发送),而串口通信则是先发送低位。

 

 

 

 

 

 

 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

大小端知识 的相关文章

  • 计算机网络(五): ros下socket编程示例

    ros下socket编程示例 服务器端 span class token macro property span class token directive keyword include span span class token str
  • 三种方式实现:进度条

    1 Bootstrap实现进度条 bootstrap min css下载地址 xff1a https cdn staticfile org twitter bootstrap 3 3 7 css bootstrap min css boot
  • 物理端口与逻辑端口

    若 1 端口 端口可分为物理端口与逻辑端口 所谓逻辑端口指的是计算机内部或交换机路由器内的端口 xff0c 看不见 xff0c 摸不着 所谓物理端口 xff0c 就是可见的端口 xff0c 像 xff1a 交换机路由器集线器 RJ11端口
  • RS485接收数据后发送乱码

    序 最近调块板子上面有几路485 xff0c 控制芯片STM32F407VE 转换芯片ADM2587 xff0c 使用485转换器连接电脑 xff0c 发现串口助手向板子发送数据后会收到乱码 xff0c 经软硬件联合调试排除bug 一 问题
  • python urllib.parse

    urlparse span class token keyword from span urllib span class token punctuation span parse span class token keyword impo
  • HTTP学习(5)--demo编写(1)

    一个基于Java的HTTP服务器demo 前面几篇博客 xff0c 大致介绍了几个方面的例子 xff0c 例如报文解析 报文组装等 现在打算将这些东西集合起来 xff0c 编写一个小HTTP服务器demo 期间遇到了很多问题 xff0c 也
  • 用Python写一个监督你刷李永乐考研题目的简单小程序

    import datetime import xlwings import math month 61 datetime datetime now strftime 39 m 39 date 61 datetime datetime now
  • 对于遗传算法,谈谈个人看法

    最近在学习遗传算法 xff0c 小有体会 这个用数学方法来模拟生物学过程的算法实在是有很多值得玩味的地方 遗传算法要干什么 xff1f 比如Z 61 f x y 我们要找到他在x 0 1 y 0 1 区间上的最大值 我们就先随机在x 0 1
  • AD(altium designer)软件的基础使用(硬件的一些总结,写的有些乱,高手请略过)

    1 快捷键 xff1a Ctrl 43 R 复制并重复粘贴 Shift 43 c 取消选择 Space 逆时针旋转对象 Shift 43 space 顺时针旋转对象 X 水平翻转对象 Y 垂直翻转对象 G切换捕捉栅格 V F View中的F
  • C++字节转换 (byte转int 互转)(BCD和HEX转换)

    2个字节short int 高低位转化 short int y 61 0x7f21 y 61 y amp 0xff00 gt gt 8 y amp 0x00ff lt lt 8 printf 34 x 34 y 用short型变量储存 xf
  • 王者荣耀-数模论文分享(虽然结果我自己都不信)

    基于基础数据的王者荣耀英雄强度评估及英雄设计 摘要 王者荣耀是当下很火爆的一款手机游戏 xff0c 如何基于当下的双方阵容选择合适的英雄来获得胜利 xff0c 是一个值得探讨的问题 xff0c 现基于游戏数据对于各个英雄的强度进行建模评估
  • 用蚁群算法求解TSP问题

    TSP是什么 xff1f TSP全称Travelling salesman problem 中文名 xff1a 旅行商问题 就是模拟退火中讲到的14个城市之间巡回旅行 xff0c 求路径最短的问题 为什么偏偏找他呢 xff1f 因为这是一个
  • python 语法小进阶1

    1 filter 是通过生成 True 和 False 组成的迭代器将可迭代对象中不符合条件的元素过滤掉 xff1b 而 map 返回的则是 True 和 False 组成的迭代器 gt gt gt res1 61 map lambda n
  • 焊接的技巧与方法

    手工焊接操作的基本步骤 1 清洁焊接对象的表面 xff0c 这一步是必须的 xff0c 就算你再赶时间也不能偷懒 用小刀或者砂纸把焊点打磨光亮 xff0c 露出铜的光泽 铜表面的氧化物会阻碍焊锡与之形成合金 xff0c 这一步做得不到位的话
  • 计算机网络体系结构

    计算机网络体系结构 一 计算机网络概述计算机网络的概念 组成与功能概念 xff1a 计算机网络 功能 xff1a 数据通信 连通性 资源共享分布式处理 信息综合处理 提高可靠性 负载均衡 发展的三个阶段组成 xff1a 物理组成 xff1a
  • 嵌入式技术基础与实践(第4版)

    1 5 2020 开放权限 在此之前 xff0c 防报告查重 嵌入式系统概述 嵌入式系统常用术语 嵌入式系统常用的C语言基本语法概要 M0 43 体系结构与指令系统简介 存储映象 中断源 硬件最小系统 GPIO及基本打通原理 程序的基本调试
  • 串行通信基础知识与UART驱动构件使用方法

    串行通信基础 串行通信接口 异步串行通信 UART 常称为 串口 或SCI xff0c 在USB未普及之前 xff0c 是PC机必备通信接口之一 通信方式为单字节通信 xff0c 是最简单的串行通信方式 RS232 RS485 接线简单 x
  • ARM Cortex-M0+中断机制与中断编程步骤

    中断基础知识 为什么需要使用中断 xff1f 如果通过查询接收标志查看一个字节是否收到 xff0c 则需要时刻花费CPU等资源 但中断机制能够在收到一个字节后 xff0c 通知CPU把收到的字节取走 异常 xff1a CPU强行从正常运行的
  • 计算机网络体系结构

    一 计算机网络概述 计算机网络的概念 组成与功能 概念 功能 组成 工作方式 分类 计算机网络的标准化工作及相关组织 标准分类 计算机网络的标准化工作 相关组织 二 计算机网络体系结构与参考模型 计算机网络分层结构 计算机网络体系结构 为什
  • KL25嵌入式实验考核

    KL25嵌入式实验考核 xff08 6 43 xff09 404 页面找不到 说明资源在审核中 1 利用 KL25 小板实现 控制红色 LED 灯每隔 2 秒钟亮暗变换的同时 在 PC 机上显示 MCU 的计时时间 xff0c MCU 的初

随机推荐

  • 自制PMW3901光流模块

    PMW3901光流Sensor体积小 功耗低 精度高 xff0c 效果非常好 xff0c 自己做了一个光流小模块带TOF测距 xff0c 使用Pixracer 43 PX4固件 xff0c 测试效果还不错 测试视频 xff1a https
  • 模数转换ADC模块

    通用基础知识 ADC模块是嵌入式应用中重要的组成部分 xff0c 是嵌入式系统与外界连接的纽带 xff0c 是在测控系统中的重要内容 ADC模块 xff1a 即模数转换模块 AD转换模块 xff0c 功能是将电压信号转换为相应的数字信号 实
  • 实验五 Flash在线编程实验

    一 xff0e 实验目的 xff08 1 xff09 掌握 Flash 存储器在线编程的基本概念 xff08 2 xff09 熟悉 Flash 存储器的在线编程擦除和写入的步骤 xff08 3 xff09 进一步深入理解 MCU 和 C 串
  • Install OpenCV+ Python in Ubuntu

    1 VMware安装ubuntu 不建议在Windows下学习 安装教程 Tip1 xff1a Ubuntu安装结束后无法正常联网 然后就是等待漫长的更新 Tip2 文件含有中文名 打开终端 export LANG 61 en US xdg
  • Tracking motion in video

    Tracking motion in video Download the source code to Ball Tracking with OpenCV
  • parse command line arguments

    parse command line arguments
  • 计算机网络

    计算机网络 一 计算机网络体系结构 二 物理层 三 数据链路层 四 网络层 五 运输层 六 应用层
  • 【c++初学】遇到问题:对xxx未定义的引用

    在编译的时候遇到了 未定义引用 root 64 czp span class token operator span PC span class token operator span span class token operator s
  • 在同一个浏览器上打开同一个网址只打开一个窗口的方法

    具体问题看图吧 xff0c 我自己也说不清楚 具体操作如下 xff1a target属性的功能之一是可以在同一个浏览器中只打开被标记相同的网页窗口 利用这一功能可以实现以上问题 target属性链接地址 xff1a http www w3s
  • esp32 Arduino IDE读取航模接收机SBUS信号

    库函数下载链接https download csdn net download qq 40925542 87207281 该库函数适用于具有多个串口的开发板 xff0c esp32中测试通过 xff0c 测试代码如下 xff1a inclu
  • curl 401 unauthorized解决

    用curl获取web信息时遇到了401unauthorized错误 用下面的命令解决了 xff1a span class token function curl span insecure anyauth u admin password
  • git自建服务器-借助蒲公英实现远程访问

    git自建服务器 借助蒲公英实现远程访问 本文涉及蒲公英组网 xff0c 这里大家可以参考蒲公英官网组网教程 使用的硬件 蒲公英x3a 路由器 xff1a 用于智能组网 xff0c 实现内网穿透vpn功能 xff1b orange pi3
  • sockaddr与sockaddr_in结构体简介

    span class token keyword struct span sockaddr span class token punctuation span span class token keyword unsigned span s
  • ROS入门(二)——创建功能包和工作空间

    提示 xff1a 文章写完后 xff0c 目录可以自动生成 xff0c 如何生成可参考右边的帮助文档 文章目录 前言一 工作空间 xff08 workspace xff09 xff1f 二 创建工作空间 xff08 workspace xf
  • SpringBoot异常处理-SimpleMappingExceptionResolver(四)

    异常处理 SimpleMappingExceptionResolver 配置 SimpleMappingExceptionResolver 处理异常 在全局异常类中添加一个方法完成异常的同一处理 结果是只不返回参数 没有上一个博客方法好 但
  • Matplotlib三维绘图,这一篇就够了

    Matplotlib三维绘图 xff0c 这一篇就够了 1 效果图1 1 3D线效果图1 2 3D散点效果图1 3 3D随机颜色散点效果图1 4 3D散点不同mark点效果图1 5 3D线框效果图1 6 3D曲面不透明效果图1 7 3D曲面
  • C++编程永不过时的语言,原因何在?

    想要知道C 43 43 到底如何你首先要了解C 43 43 的特性 C 43 43 既保留了C语言的有效性 灵活性 便于移植等全部精华和特点 xff0c 又添加了面向对象编程的支持 xff0c 具有强大的编程功能 xff0c 可方便地构造出
  • px4ctrl代码解读-px4ctrl_node

    头文件 include lt ros ros h gt include 34 PX4CtrlFSM h 34 include lt signal h gt 1 初始化节点 ros init argc argv 34 px4ctrl 34 r
  • ZYNQ图像处理(1)——vdma_hdmi显示环境搭建

    1 引言 FPGA是一种现场可编程逻辑门阵列 xff0c 其并行的特点让其在图像处理 数字通信等领域有广泛的应用 FPGA缺点是不擅长流程控制 xff0c 对于IIC SPI等通信方式 xff0c 往往需要用到状态机 ZYNQ7000是赛灵
  • 大小端知识

    大端和小端 xff08 Big Endian和Little Endian xff09 xff1a 1 Little Endian就是低位字节排放在内存的低地址端 xff0c 高位字节排放在内存的高地址端 2 Big Endian就是高位字节