面试必问的红黑树,从根源上探究红黑树的本质

2023-05-16

前言

本文主要讲解下面试经常会问到的红黑树,看看究竟是什么神仙鬼怪。

二叉树

满足以下两个条件的树就是二叉树:

  1. 本身是有序树(若将树中每个结点的各子树看成是从左到右有次序的(即不能互换),则称该树为有序树(Ordered Tree));
  2. 树中包含的各个节点的度不能超过 2,即只能是 0、1 或者 2;

简单地理解,二叉树(Binary tree)是每个节点最多只有两个分支(即不存在分支度大于2的节点)的树结构。通常分支被称作“左子树”或“右子树”。

二叉查找树

要了解红黑树之前,免不了先看下二叉查找树是什么。

维基百科上的定义

二叉查找树(英语:Binary Search Tree),也称为二叉搜索树有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于或等于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;

图示理解

下图为查找值为29的节点,有以下步骤:

  1. 查看根节点41
  2. 因为41> 29 ,所以查看41的左孩子20
  3. 因为20 < 29 ,所以查看20的右孩子29,发现其正好是要查看的节点。

退化

二叉查找树有个非常严重的问题,如果数据的插入是从大到小插入的,或者是从小到大插入的话,会导致二叉查找树退化成单链表的形式,俗称“瘸子“。

  1. 左瘸子:例如,插入数据依次为{5,4,3,2,1}(从大到小),则如下图所示:
  2. 右瘸子:例如,插入数据依次为{1,2,3,4,5}(从小到大),则如下图所示:

为了解决该问题,出现了一些解决方法,即平衡,能够使得树趋向平衡,这种自平衡的树叫做平衡树。

平衡树

平衡树(Balance Tree,BT) 指的是,任意节点的子树的高度差都小于等于1。常见的符合平衡树的有AVL树(二叉平衡搜索树),B树(多路平衡搜索树,2-3树,2-3-4树中的一种),红黑树等。

AVL树

AVL树(由发明者Adelson-Velsky 和 Landis 的首字母缩写命名),是指任意节点的两个子树的高度差不超过1的平衡树。又称

自平衡二叉搜索树

AVL树能解决上文二叉查找树中的右瘸子问题,例如,插入数据依次为{1,2,3,4,5}(从小到大),则如下图所示:

AVL树会对不符合高度差的结构进行调整,从而使得二叉树趋向平衡

2-3树

基本概念

2-3树,是指每个具有子节点的节点(内部节点,internal node)要么有两个子节点和一个数据元素,要么有三个子节点和两个数据元素的自平衡的树,它的所有叶子节点都具有相同的高度。

简单点讲,2-3树的非叶子节点都具有两个分叉或者三个分叉,所以,称作2叉-3叉树更容易理解。

另外一种说法,具有两个子节点和一个数据元素的节点又称作2节点具有三个子节点和两个数据元素的节点又称作3节点,所以,整颗树叫做2-3树。

所有叶子点都在树的同一层,一样高

性质1. 满足二叉搜索树的性质
性质2. 节点可以存放一个或两个元素
性质3. 每个节点有两个或三个子节点

创建2-3树的规则

插入操作

  1. 向2-节点中插入元素

  1. 向一颗只含有一个3-节点的树中插入元素

相关视频推荐

后台开发第五十二讲|面试中,红黑树在Linux内核中的3种使用

需要C/C++ Linux服务器架构师学习资料加群956314242获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

 

2-3-4树

含义

  1. 2节点:包含两个子节点和一个数据元素
  2. 3节点:包含三个子节点和一个数据元素
  3. 4节点:包含四个子节点和一个数据元素

2-3-4树,它的每个非叶子节点,要么是2节点,要么是3节点,要么是4节点,且可以自平衡,所以称作2-3-4树。

规则

规则1. 加入新节点时,不会往空的位置添加节点,而是添加到最后一个叶子节点上
规则2. 四节点可以被分解三个2-节点组成的树,并且分解后新树的根节点需要向上和父节点融合

插入操作

  1. 原本的2-3-4树
  2. 对于上图的2-3-4树,插入一个节点17,由于规则1,节点17不会加入节点[16,18,20]的子树,而是与该节点融合。
  3. 由于规则2,节点[16,17,18,20]是一个4节点,将该节点进行拆解成新的树,将18作为子树的根节点进行拆分。
  4. 此时树暂时失去了平衡,我们需要将拆分后的子树的根节点向上进行融合。
  5. 同理可得,由于规则2,节点[6,10,14,18]是一个4节点,将该节点进行拆解成新的树,将14作为子树的根节点进行拆分,完成了2-3-4树的构建。

总结了下插入节点的过程,无非也就为了符合两条规则,那么,2-3树,2-3-4树都有了,那是不是也有2-3-4-5树,2-3-4-5--...-n树的存在呢?事实上是有的,世人把这一类树称为一个名字:B树。

B树

B树,表示的是一类树,它允许一个节点可以有多于两个子节点,同时,也是自平衡的,叶子节点的高度都是相同的。

所以,为了更好地区分一颗B树到底属于哪一类树,我们给它一个新的属性:度(Degree):一个节点能有多少箭头指向其他节点

具有度为3的B树,表示一个节点最多有三个子节点,也就是2-3树的定义。

具有度为4的B树,表示一个节点最多有四个子节点,也就是2-3-4树的定义。

度为4的B树的示例图:

红黑树

简介

R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

如何理解红黑树

一个经典的红黑树如下图所示(省略了叶子节点都是黑色的NIL节点)

如图2所示,将该红黑树与上文讲到的2-3-4树对比,是否发现,红黑树就是一个2-3-4树

  1. 每个节点或者是黑色,或者是红色。
  2. 根节点是黑色
  3. 每个叶子节点(NIL)是黑色。[注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
  4. 如果一个节点是红色的,则它的子节点必须是黑色的。
    由于红黑树的每个节点都是由2-3-4树转化而来的,从而红色节点不能连续两个出现,不然会出现4节点的情况,导致违反了规则2。而且红黑树的每一个黑节点都是3节点中的最中间的那个值,或者是2节点中其中一个值。
  5. 从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点
    原因:红黑树这些黑色节点在2-3-4树中代表的是由1节点的一个2-3-4树,而2-3-4树是同一个子树的深度是相同的,平衡的,所以从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。(如下图所示,蓝色代表是黑色节点)

注意:

  1. 特性(3)中的叶子节点,是只为空(NIL或null)的节点。
  2. 特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。
  3. 红黑树虽然本质上是一棵二叉查找树,但它在二叉查找树的基础上增加了着色和相关的性质使得红黑树相对平衡,从而保证了红黑树的查找、插入、删除的时间复杂度最坏为O(log n)
由上面的例子所示,我们只要把红黑树当做是2-3-4树来处理,并且对应的颜色进行改变或者进行左旋右旋的操作,即可达到使得红黑树平衡的目标。

如何保持红黑树的结构

当我们插入一个新的节点的时候,如何保证红黑树的结构依然能够符合上面的五个特性呢?

树的旋转分为左旋和右旋,下面借助图来介绍一下左旋和右旋这两种操作。

左旋

原本的状态

过程图

结束图

如上图所示,当在某个目标结点E上,做左旋操作时,我们假设它的右孩子S不是NIL。左旋以S到E之间的链为“支轴”进行,它使S成为该子树的新根,而S的左孩子则成为E的右孩子。

右旋

原先状态图

过程图

结束图

同左旋类似,当在某个目标结点S上,做右旋操作时,我们假设它的右孩子S不是NIL。左旋以S到E之间的链为“支轴”进行,它使S成为该子树的新根,而S的左孩子则成为E的右孩子。

应用

红黑树的应用比较广泛,主要是用它来存储有序的数据,它的时间复杂度是O(logn),效率非常之高。
例如,Java集合中的TreeSet和TreeMap,C++ STL中的set、map,以及Linux虚拟内存的管理,都是通过红黑树去实现的。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

面试必问的红黑树,从根源上探究红黑树的本质 的相关文章

  • Android公司面试题

    Android 面试题及面试经验 我的第一次面试经验 今天来到成都面试 xff0c 面试的是Android xff0c 说实话 xff0c Android并不是我的强项 xff0c 只是在大学期间接触过 第一关人事还可以 xff0c 第二关
  • linux---tcp通信流程以及代码实现

    TCP通信特性 xff1a xff08 在网络版块详细讲解 xff09 面向连接 可靠 面向字节流 TCP通信过程 c 43 43 封装TCP通信 1 include lt iostream gt 2 include lt arpa ine
  • 物联网学习及理解

    物联网学习及理解 xff08 来自一个物联网专业学生的心得 xff09 什么是物联网物联网能做什么一 物联网运用领域二 物联网发展趋势 物联网怎么实现一 局域网内的物联网二 广域网内的物联网 总结 在开始写这篇博客之前 xff0c 我不得不
  • vscode代码格式化快捷键

    Windows xff1a Shift 43 Alt 43 F Linux Ctrl 43 Shift 43 I MacOS Shift 43 Option 43 F
  • 多线程和网络编程(多线程)

    一 多线程 1 进程和线程 进程 xff1a 是正在运行的程序 是系统进行资源分配和调用的独立单位 每一个进程都有它自己的内存空间和系统资源 线程 xff1a 是进程中的单个顺序控制流 xff0c 是一条执行路径 单线程 xff1a 一个进
  • Java八种基本数据类型(图文详解)

    Java八种基本数据类型 Java八种数据类型Java八种数据类型的分类 xff08 图 xff09 基本数据类型分为三大类 数值型 字符型 布尔型 数值型整数类型 xff08 byte short int long xff09 浮点型 f
  • numpy基础用法-学习笔记-task10

    大作业 本次练习使用 鸢尾属植物数据集 iris data xff0c 在这个数据集中 xff0c 包括了三类不同的鸢尾属植物 xff1a Iris Setosa xff0c Iris Versicolour xff0c Iris Virg
  • STM32F103驱动LD3320语音识别模块

    STM32F103驱动LD3320语音识别模块 LD3320语音识别模块简介模块引脚定义STM32F103ZET6开发板与模块接线测试代码实验结果 LD3320语音识别模块简介 基于 LD3320 xff0c 可以在任何的电子产品中 xff
  • Arduino UNO驱动土壤湿度传感器检测

    Arduino UNO驱动土壤湿度传感器检测 简介运行要求Arduino UNO与传感器接线程序展示实践效果总结 简介 本次使用到是这个新款土壤湿度传感器 xff01 这款电容式土壤湿度传感器区别于市面上绝大部分的电阻式传感器 xff0c
  • ESP32使用TCP HTTP访问API接口JSON解析获取数据

    ESP32使用TCP HTTP访问API接口JSON解析获取数据 API接口代码解析获取时间代码烧录效果总结 API接口 单片机常用的API接口基本都是返回的一串JSON格式的数据 xff0c 这里以ESP32联网获取时间信息作为获取API
  • 电池保护板 - 问题归纳

    电池保护板 问题归纳 简介充电锂电池磷酸铁锂电池 放电总结 最近更新日期 xff1a 2023 03 07 简介 电池充放电过程中 xff0c 如果电压 电流或温度等参数不稳定或超出电池的安全范围 xff0c 就会对电池造成损害 xff0c
  • Arduino驱动DS1302显示时钟

    Arduino驱动DS1302显示时钟 前言电气参数经典应用电路接线程序实验结果 前言 目前有许多流行的串行时钟电路 xff0c 例如 DS1302 xff0c DS3231 xff0c DS1307 xff0c PCF8485 等 它们由
  • 计算机网络---应用层以及HTTP协议

    网络层是程序员接触最多的一个层级 xff0c 应用层是层级体系中的最上层的一级 xff0c 是我们做逻辑处理最多的 应用层的功能什么是urlhttp协议 应用层的功能 是程序员写的一个一个解决的实际的问题都是在应用层 xff0c 是做逻辑运
  • 51驱动NRF24L01通信,NRF24L01与TTL转NRF24L01模块通信

    51驱动NRF24L01通信 xff0c NRF24L01与TTL转NRF24L01模块通信 NRF24L01一 简介二 引脚功能描述 程序设计一 对 24L01 的程序编程的基本思路如下 xff1a 二 Tx 与 Rx 的配置过程1 Tx
  • 51单片机驱动K型热电偶 OLED0.96显示

    51单片机驱动K型热电偶 OLED0 96显示 一 基本参数二 接线三 部分代码引脚定义时序对用代码 四 实验现象五 注意事项 一 基本参数 二 接线 K型热电偶 MAX6675 模块引脚说明GNDGND接地 单独供电需要与MCU共地VCC
  • 基于ESP32做低功耗墨水屏时钟

    基于ESP32做低功耗墨水屏时钟 电子墨水屏概述 ESP32实验低功耗电子时钟功能描述接线开发实验结果 电子墨水屏 概述 电子墨水是一种革新信息显示的新方法和技术 和传统纸差异是电子墨水在通电时改变颜色 xff0c 并且可以显示变化的图象
  • STC89C52制作可程控低频信号发生器

    STC89C52制作可程控低频信号发生器 准备工作操作流程关于PCF8591实现构思 相关代码定时器相关代码串口控制频率和LCD显示函数 相关功能现象总结 准备工作 由于51单片机本身并不自带DAC的功能 xff0c 因此需要借助外置模块实
  • Arduino UNO驱动 Si3531A三通道时钟信号发生器

    Arduino UNO驱动 Si3531A三通道时钟信号发生器 Si3531A模块简介模块引脚定义Arduino UNO与模块接线测试代码实验结果 Si3531A模块简介 Si3531A是一个IIC接口可编程时钟信号频率发生器 xff0c
  • Arduino驱动HC-SR04超声波测距

    Arduino驱动HC SR04超声波测距 前言电气参数基本工作原理时序图接线程序实验结果总结 前言 HC SR04超声波测距模块可提供2cm 400cm的非接触式距离感测功能 xff0c 测距精度可达3mm xff0c 包括发射器 接收器

随机推荐

  • stm32f103c8t6新建环境+点灯

    stm32f103c8t6新建环境 43 点灯 简介步骤一 新建文件二 建立启动 43 用户端本身文件三 mdk内部设置四 实现基础工作效果五 点灯 总结 简介 STM32F103C8T6是一款由意法半导体公司 xff08 ST xff09
  • ESP32驱动1.28寸GC9A01播放视频(一、视频分辨率的调整和视频格式的转换)

    ESP32驱动1 28寸GC9A01播放视频 xff08 一 视频分辨率的调整和视频格式的转换 xff09 播放前准备转换视频分辨率用FFmpeg将 MP4转换为 mjpeg格式FFmpeg的win10环境搭建FFmpeg的下载环境变量的搭
  • Arduino UNO驱动micro SD卡读写模块

    目录 一 简介二 使用前准备三 测试方法四 实验现象 一 简介 Micro SD卡模块TF卡读写卡器板载电平转换电路 xff0c 即接口电平可为5V或3 3V xff0c 支持支持Micro SD卡 2G Micro SDHC高速卡 32G
  • ESP32驱动1.28寸GC9A01播放视频(二、程序说明和效果展示)

    ESP32驱动1 28寸GC9A01播放视频 xff08 二 程序下载和效果展示 xff09 1 28寸GC9A01屏幕屏幕引脚定义 程序说明程序更改1 Arduino DataBus bus和Arduino GC9A01 gfx要改成ES
  • 计算机网络---传输层的udp协议

    首先我们认识要在应用层对数据封装之后需要传输到传输层进行封装 xff0c 但是在应用层只是对数据进行了处理 xff0c 所以在传输层上需要对传输到那个进程进行设置 xff0c 所以在传输层需要对port进行设置 所以port是标志一个进程
  • c++中 ->,c++中::

    gt gt 用于指针 gt 用于指向结构体的指针 gt 用于指向结构体的指针 xff0c 表示结构体内的元素 include lt stdio h gt struct role 定义一个结构体 char name 8 姓名 int leve
  • U8W/U8W-Mini使用与常见问题解决

    U8W U8W Mini使用与常见问题解决 U8WU8W U8W mini简介准备工作U8W U8W mini在线联机下载U8W U8W mini脱机下载第一步 xff0c 把程序下载到U8W U8W mini烧录器中 xff1a 第二步
  • Arduino 驱动GP2Y1014AU检测PM2.5

    Arduino 驱动GP2Y1014AU检测PM2 5 一 基本参数二 接线三 部分代码引脚定义对应代码 四 实验现象五 注意事项 一 基本参数 二 接线 三 部分代码 引脚定义 define measurePin span class t
  • STM32F103ZET6驱动TOF250激光测距传感器

    STM32驱动TOF250激光测距传感器 TOF250介绍I2C通讯协议I2C寄存器地址 TOF250引脚说明和STM32的接线和STM32的接线 程序实验结果总结 TOF250介绍 TOF250是一款基于TOF原理的单点测距雷达 xff0
  • STM32驱动SG90舵机

    STM32驱动SG90舵机 关于SG90舵机SG90转动角度与占空比的关系驱动SG90舵机代码 确定控制引脚 写代码 SG90舵机正常驱动现象总结 关于SG90舵机 SG90是一种小型伺服电机 xff0c 通常用于模型制作和小型机械应用中
  • Arduino驱动L298N控制直流电机的正反转和调速

    Arduino驱动L298N控制直流电机的正反转和调速 一 前言二 产品参数三 驱动直流电机三 接线图四 程序五 实验结果总结 一 前言 本模块使用ST公司的L298N作为主驱动芯片 xff0c 具有驱动能力强 xff0c 发热量低 xff
  • Livox MID-70连接及使用

    ROS下载安装 本文选用ros xff0c 未使用ros2 在Ubuntu18 04下配置ros 下载安装参考 xff1a Ubuntu18 04安装 ROS桌面完整版 其中注意在第8部分 span class token function
  • 微信小程序 宠物论坛1

    微信小程序宠物论坛1 一个简单的论坛包括以下几个方面 xff1a 登录模块发帖模块首页模块帖子详情模块搜索模块个人主页模块 下面将从这6个方面介绍如何用微信小程序开发一个简单的论坛 登录模块 先看界面图 打开小程序首先看到这个界面 xff0
  • 微信小程序宠物论坛6

    微信小程序宠物论坛6 个人主页页面 JS部分 const db 61 wx cloud database Page data openid 34 34 nickname 34 34 heads 34 34 onLoad function o
  • 激光SLAM从理论到实践学习——第三节(传感器数据处理2:激光雷达运动畸变的去除)

    传感器数据处理2 xff1a 激光雷达运动畸变的去除 激光雷达运动畸变的去除比里程计标定更重要 xff0c 但也取决于用的雷达型号 我用的思岚A2雷达频率小于10Hz xff0c 畸变也是比较明显的 概念介绍 激光雷达传感器介绍 xff08
  • Ubuntu16.04 ROS环境中RealSense D435i安装使用

    Ubuntu16 04 ROS环境中RealSense D435i安装使用 弄了三四天 xff0c 网上说法很多 xff0c 有的说需要编译内核 xff0c 然而编译内核下载的补丁特别慢 xff0c 有的说catkin make的需要加其它
  • 计算机网络---传输层(tcp协议,三次握手,四次挥手)

    tcp报头三次握手四次挥手状态改变WIME WAIT状态相关的问题 tcp协议是面向连接 xff0c 可靠传输 xff0c 面向字节流的传输层协议 xff0c 首先我们认识一下tcp的协议报头 源 目的端口 xff1a 表示数据是从哪个进程
  • C++中 对》和《的重载

    在 C 43 43 中 xff0c 左移运算符 lt lt 可以和 cout 一起用于输出 xff0c 因此也常被称为 流插入运算符 或者 输出运算符 实际上 xff0c lt lt 本来没有这样的功能 xff0c 之所以能和 cout 一
  • 深入理解 http 反向代理(nginx)

    要理解什么是 反向代理 reverse proxy 自然你得先知道什么是 正向代理 forward proxy 另外需要说的是 一般提到反向代理 通常是指 http 反向代理 但反向代理的范围可以更大 比如 tcp 反向代理 在这里 不打算
  • 面试必问的红黑树,从根源上探究红黑树的本质

    前言 本文主要讲解下面试经常会问到的红黑树 xff0c 看看究竟是什么神仙鬼怪 二叉树 满足以下两个条件的树就是二叉树 xff1a 本身是有序树 xff08 若将树中每个结点的各子树看成是从左到右有次序的 即不能互换 xff0c 则称该树为