四足机器人(三)--- 姿态控制

2023-05-16

四足机器人(三)--- 姿态控制

  • 概述
  • 姿态表示
  • 使用MATLAB实现姿态控制算法
  • 效果

概述

    四足机器人运动过程中,身体部分的姿态会不断地发生变化。假如机器人的足端一直保持与地面接触且相对位置不发生变化,此时的身体姿态我们称之为站立姿态。
    四足机器人的站立姿态控制,本质上是并联机器人的逆解。只不过相比于并联机器人每条支腿只有一个驱动自由度、平台自由度和驱动自由度一般相等而言,四足机器人存在许多冗余自由度。因此在解算出每条腿的位置向量后,还需要对每条腿做逆解(而不是像并联机器人那样直接得到线位移)。在这里我们默认单腿的逆解已知。

姿态表示

在这里插入图片描述

其中,l 和 w分别表示机器人足端在长度与宽度,b表示两前足基座原点之间的距离。
在这里插入图片描述
移除后腿后 ,其中, O 为地面坐标系原点,位于足端位置的对角线交点; O’ 为身体部分几何中心。

我们使用齐次变换矩阵 A 来表示机器人身体部分的位姿:
在这里插入图片描述
其中 pn 为向量OO’ 的坐标分量,表示位置:在这里插入图片描述
R 为身体相对于地面的旋转矩阵,表示姿态(RPY为欧拉角):在这里插入图片描述

使用MATLAB实现姿态控制算法

rpy_r = 0;
rpy_p = 40;
rpy_y = 0;
pos_x = 0;
pos_y = 0;
pos_z = 190;

b = 160;
w = 210;
l = 440;

R = rpy_r*pi/180;
P = rpy_p*pi/180;
Y = rpy_y*pi/180;
pos = [pos_x,pos_y,pos_z]';

rotx = ([[1,       0,      0  ]
         [0,   cos(R), -sin(R)]
         [0,   sin(R), cos(R)]]);
     
roty = ([[cos(P),  0,    -sin(P)]
         [0,       1,    0      ]
         [sin(P),  0,   cos(P)]]);

rotz = ([[cos(Y), -sin(Y),  0]
         [sin(Y),  cos(Y),  0]
         [  0,      0,      1]]);
rot_mat = rotx * roty * rotz;

%结构参数
body_struc = ([[l/2,  b/2,   0]
               [l/2,  -b/2,  0]
               [-l/2,  b/2,   0]
               [-l/2,  -b/2,  0]])';
 
footpoint_struc = ([[l/2,  w/2-70,  0]
                    [l/2,  -w/2-20,  0]
                    [-l/2,  w/2-70,  0]
                    [-l/2,  -w/2-20,  0]])';
                
 leg_pose = zeros(3,4);
 for i = 1:4
     leg_pose(:,i) = pos + rot_mat * body_struc(:,i) - footpoint_struc(:,i);
 end
 
 rf_x = (leg_pose(1,1));
 rf_y = (leg_pose(2,1));
 rf_z = (leg_pose(3,1));
 lf_x = (leg_pose(1,2));
 lf_y = (leg_pose(2,2));
 lf_z = (leg_pose(3,2));
 rb_x = (leg_pose(1,3));
 rb_y = (leg_pose(2,3));
 rb_z = (leg_pose(3,3));
 lb_x = (leg_pose(1,4));
 lb_y = (leg_pose(2,4));
 lb_z = (leg_pose(3,4));

效果

1.零位
在这里插入图片描述
2. x向平移0.2
在这里插入图片描述
3.x向平移-0.3
在这里插入图片描述

  1. 绕z轴旋转10°
    在这里插入图片描述

  2. 绕z轴旋转30°
    在这里插入图片描述

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

四足机器人(三)--- 姿态控制 的相关文章

  • Online Trajectory Generation of a MAV for Chasing a Moving Target in 3D Dense Environments

    微型无人机的在线轨迹生成 xff0c 用于在3D密集环境中追踪运动目标 摘要一 介绍二 相关工作A 在障碍物环境中追逐B 通过预先规划安全地生成轨迹 三 问题陈述A 问题设置B 能力C 命名 IV 视点生成A 可见度指标B 具有安全性和可见
  • 配置目标跟踪开源项目traj_gen_vis踩过的坑

    项目地址 https github com icsl Jeon traj gen vis 安装依赖需注意的问题 traj gen with qpoases 需安装ros分支的代码 xff08 这个作者并没有指出 xff0c 坑 xff09
  • cmake arm-none-eabi-gcc for stm32 cpp project

    尝试把原有的stm32工程F1canBootloader用cmake来管理 xff0c 遇到了以下几个坑 xff1a 1 报错 xff0c undefined reference to 96 dso handle 39 CMakeFiles
  • 网络攻防之wireshark抓取登录信息

    使用wireshark抓取登录信息 简介 xff1a Wireshark xff08 前称Ethereal xff09 是一个网络封包分析软件 网络封包分析软件的功能是撷取网络封包 xff0c 并尽可能显示出最为详细的网络封包资料 Wire
  • 头文件互相包含所引发的的问题(深入剖析)

    今天写程序出现了一个让人蛋疼的错误 xff0c 后来发现是由于头文件互相包含所引起的 原本只是简单的以为头文件互相包含只会触发 xff0c 头文件的递归包含 即 xff0c A包含B xff0c 所以才A的头文件里会将B的头文件内容拷贝过来
  • C++11异步操作future和aysnc 、function和bind

    C 43 43 11异步操作future和aysnc function和bind 前言异步操作std future和std aysnc 介绍std future和std aysnc的使用Demostd packaged task 介绍std
  • C++文件服务器项目—FastDFS—1

    C 43 43 文件服务器项目 FastDFS 1 前言1 项目架构2 分布式文件系统2 1 传统文件系统2 2 分布式文件系统 3 FastDFS介绍3 1 fdfs概述3 2 fdfs框架中的三个角色3 3 fdfs三个角色之间的关系3
  • C++文件服务器项目—Redis—2

    C 43 43 文件服务器项目 Redis 2 前言1 数据库类型1 1 基本概念1 2 关系 非关系型数据库搭配使用 2 redis基础知识点2 1 redis安装2 2 redis中的两个角色2 3 redis中数据的组织格式2 4 r
  • C++文件服务器项目—Nginx—3

    C 43 43 文件服务器项目 Nginx 3 前言1 Nginx一些基本概念1 1 Nginx初步认识1 2 正向代理概念理解1 3 反向代理概念理解 2 Nginx的安装与配置2 1 Nginx与相关依赖库的安装2 2 Nginx相关的
  • C++文件服务器项目—FastCGI—4

    C 43 43 文件服务器项目 FastCGI 4 前言1 CGI 概念理解2 FastCGI 概念理解3 FastCGI和spawn fcgi安装4 FastCGI和 Nginx的关系5 Nginx数据转发 修改配置文件6 spawn f
  • C++文件服务器项目—Nginx+FastDFS插件—5

    C 43 43 文件服务器项目 Nginx 43 FastDFS插件 5 前言1 文件上传下载流程1 1 文件上传流程1 2 文件下载流程1 3 文件下载优化流程 2 Nginx和fastDFS插件2 1 安装Nginx和fastdfs n
  • C++文件服务器项目—数据库表设计 与 后端接口设计—6

    C 43 43 文件服务器项目 数据库表的设计 6 前言1 数据库建表1 1 用户信息表 user info1 2 文件信息表 file info1 3 用户文件列表表 user file list1 4 用户文件数量表 user file
  • C语言中宏定义的使用

    1 引言 预处理命令可以改变程序设计环境 提高编程效率 它们并不是 C 语言本身的组成部分 不能直接对 它们进行编译 必须在对程序进行编译之前 先对程序中这些特殊的命令进行 预处理 经过预处理后 程序就不再包括预处理命令了 最后再由编译程序
  • C++文件服务器项目—项目总结与反向代理—7

    C 43 43 文件服务器项目 项目总结与反向代理 7 1 项目总结2 项目提炼3 web服务器的反向代理4 存储节点的反向代理 组件介绍基本写完了 xff0c 后续进行深入 本专栏知识点是通过零声教育的线上课学习 xff0c 进行梳理总结
  • https相关内容

    https相关内容 前言基础概念理解https传输过程 前言 本文写https相关内容 xff0c 持续补充 基础概念理解 对称加密 加解密秘钥是同一个 非对称加密 公钥 私钥 sa gt 公钥私钥都是两个数字ecc gt 椭圆曲线 两个点
  • TinyKv介绍

    TinyKv介绍 前言tinykv架构代码结构如何去写TinyKv参考内容 前言 开一个新坑 xff0c 将tinykv的4个project全部实现 虽然今天我点进去看的时候就萌生退意 好在没有放弃之前 xff0c 把project1完成了
  • TinyKv Project1 Standalone KV

    TinyKv Project1 Standalone KV 前言Project1 StandaloneKV 文档翻译文档的重点内容StandAloneStorageWriteReader Server单元测试 前言 project1还是比较
  • TinyKv Project2 PartA RaftKV

    TinyKv Project2a RaftKV 前言Project2 RaftKV 文档翻译Project2A重点内容抛出RaftLogRaftLog结构体字段详解RaftLog核心函数详解 RaftRaft 驱动规则Msg的作用与含义Ms
  • TinyKv Project2 PartB RaftKV

    TinyKv Project2 PartB RaftKV 前言Project2 PartB RaftKV 文档翻译PartB 到底想让我们做什么 xff1f 分析要实现的函数到底要干什么事情proposeRaftCommand 将上层命令打
  • TinyKv Project2 PartC RaftKV

    TinyKv Project2 PartC RaftKV 前言Project2 PartC RaftKV 文档翻译raft节点如何自动的compact压缩自己的entries日志生成快照与快照收收发日志压缩与快照收发总结疑难杂症 前言 pr

随机推荐

  • TinyKv Project3 PartA Multi-raft KV

    TinyKv Project3 PartA Multi raft KV 前言Project3 PartA Multi raft KV 文档翻译Add RemoveLeaderTransfer 前言 Project3是整个项目最难的部分 xf
  • TinyKv Project3 PartB Multi-raft KV

    TinyKv Project3 PartB Multi raft KV 前言Project3 PartB Multi raft KV 文档翻译发送请求LeaderTransfer 禅让ConfChange 集群成员变更Split regio
  • TinyKv Project3 PartC Multi-raft KV

    TinyKv Project3 PartC Multi raft KV 前言Project3 PartC Multi raft KV 文档翻译processRegionHeartbeatSchedule 前言 3C要求我们实现调度 3c按照
  • nodejs api学习:fs.createReadStreame()

    作用 这个api的作用是打开一个可读的文件流并且返回一个fs ReadStream对象 参数 createReadStream path option 该用来打开一个可读的文件流 xff0c 它返回一个fs ReadStream对象 64
  • TinyKv Project4 Transactions

    TinyKv Project4 Transactions 前言Project4 Transactions 文档翻译Project 4 TransactionsTinyKV中的事务Part APart BPart C Percolator x
  • sealos issue #2157 debug 思路流程记录

    sealos issues 2157 debug思路流程 前言分析issue剖析源码解决方案总结 前言 这个项目蛮有意思的 xff0c sealos 是以 kubernetes 为内核的云操作系统发行版 boss上看到 gt 沟通 gt 解
  • 系统设计场景题—MySQL使用InnoDB,通过二级索引查第K大的数,时间复杂度是多少?

    系统设计场景题 MySQL使用InnoDB xff0c 通过二级索引查第K大的数 xff0c 时间复杂度是多少 xff1f 前言明确场景对齐表的结构分析时间复杂度执行一条 select 语句 xff0c 期间发生了什么 xff1f 分析性能
  • 《嵌入式系统》 |(四) STM32软件架构 知识梳理

    系列索引 嵌入式系统 嵌入式系统 重点知识梳理 目录 CMSIS软件架构库文件说明 CMSIS软件架构 CMSIS概述 CMSIS软件架构由四层 xff1a 用户应用层 操作系统及中间件接口层 CMSIS层和硬件层 由三部分构成 核内外设访
  • Cmake链接第三方库的三种方法

    Cmake链接第三方库的三种方法 本文介绍链接第三方库的3种方法 以OpenBLAS举例 使用的工程名称为Test lib xff08 可执行文件名字 xff09 xff0c 主程序为library c 代码中的各路径请自行替代 xff1a
  • SADP功能使用

    SADP主要使用的是链路层多播及UDP多播的原理进行实现的 1 链路层多播 span class token function socket span span class token punctuation span PF PACKET
  • MatlabR2022b + Visual Studio环境配置

    在Matlab中输入 mex setup c 43 43 命令确认MEX使用VS2022编译环境 VC 43 43 目录 包含目录 添加 D Matlab2022b extern include VC 43 43 目录 库目录 添加 D M
  • ROS小车自主导航

    在进行ROS小车自主导航时 xff0c 需要用到三维可视化软件rviz xff0c 然而出现了问题 问题 xff1a 在运行rosrun rviz rviz xff0c 导入自己导航的程序后 xff0c 需要通过2D Pose Estima
  • SIYI AK28 遥控器接收机的SBUS口与STM32通讯

    SBUS介绍 SBUS是Futaba公司定义的一种串口通信协议 xff0c Futaba的产品应用越来越广泛 xff0c 不论是航模 xff0c 无人机 xff0c 还是机器人 xff0c 遥控车 xff0c 总能有它的身影 SBUS是一个
  • 基于STM32F407四旋翼无人机---AK8975磁力计(四)

    基于STM32F407四旋翼无人机 AK8975磁力计 xff08 四 xff09 磁力计基本介绍1 2 磁力计原理图 2 磁力计数据获取3 磁力计椭球拟合校准3 1 简单介绍椭球拟合 磁力计基本介绍 该模块采用高灵敏度霍尔传感器技术 xf
  • 硬链接与软链接

    硬链接 hard link 与软链接 xff08 又称符号链接 xff0c 即 soft link 或 symbolic link xff09 链接为 Linux 系统解决了文件的共享使用 xff0c 还带来了隐藏文件路径 增加权限安全及节
  • 基于STM32F407四旋翼无人机 --- 姿态解算讲解(四元数)(叉积法融合陀螺仪数据和加速度数据)(五)

    基于STM32F407四旋翼无人机 姿态解算讲解 xff08 五 xff09 姿态解算姿态解算定义欧拉角四元数四元数性质 方向余弦矩阵四元数方向余弦矩阵 叉积法融合陀螺仪数据和加速度数据叉积运算 一阶龙格库塔法四元数更新获得欧拉角 姿态解算
  • 基于STM32F407四旋翼无人机---PID算法控制(六)

    基于STM32F407四旋翼无人机 PID算法控制 xff08 六 xff09 PID介绍PID仿真分析 PID介绍 PID介绍 此算法是由P xff08 比例 xff09 I xff08 积分 xff09 和D xff08 微分 xff0
  • 四足机器人(一)----MATLAB simulink对四足机器人物理建模

    四足机器人 xff08 一 xff09 MATLAB simulink对四足机器人物理建模 一 本设计中用的是网上下载的别人已经画好的四足机器狗的3D模型 那么我们就需要将这些3D模型导入到MATLAB的建模中 xff0c 打开MATLAB
  • 四足机器人(二)---运动学逆解和步态规划

    四足机器人 xff08 二 xff09 运动学逆解和步态规划 运动学逆解步态规划MATLAB仿真 运动学逆解 其实运动学分为运动学正解和运动学逆解 xff0c 二者有什么区别呢 xff1f 因为在四足机器人中用的是12个舵机 xff0c 所
  • 四足机器人(三)--- 姿态控制

    四足机器人 xff08 三 xff09 姿态控制 概述姿态表示使用MATLAB实现姿态控制算法效果 概述 四足机器人运动过程中 xff0c 身体部分的姿态会不断地发生变化 假如机器人的足端一直保持与地面接触且相对位置不发生变化 xff0c