STM32 四轴无人机的设计——基于HCSR04超声波模块的距离检测与警报设计

2023-05-16

1、系列总述

从现在开始将会进入四轴无人机的制作,我是第一次制作四旋翼,从前没有接触过这个方面,手边的参考资料只有一本四轴的设计书和正点原子F405飞控的源码,所以代码逻辑设计方面肯定有所欠缺,大家可以积极留言讨论,共同进步。
进入正题,距离检测与报警,我的设想是将超声波测距模块安装在四旋翼的底部,虽然超声波精度不高,声波发射范围不可控,但是可以作为初学者,此模块可以完成定高,测距+报警功能已经满足了我的需求。

2.设计思路

依靠超声波模块测算空对地距离,在安全范围,无报警声,进入危险范围(我设定的<3m)蜂鸣器的报警频率与距离成正比,进入非常危险范围(<1m)蜂鸣器长鸣。

3、硬件设计

  1. STM32F1开发板
  2. HC_SR04超声波模块
  3. 蜂鸣器

在这里插入图片描述
根据官方提供的数据可以看到,超声波驱动非常简单,只需要给出10us的高电平在Trip引脚,就可以让模块发出8个40KHz的脉冲,返回信号用高电平时间表示远近,并且从Echo引脚输出。所以这里就有两种设计方法,(1)直接通过对IO端口的操作,(2)通过TIM定时器的输入捕获功能,我这里使用的是第一种方法。第二种方法总会莫名其妙的无法接收到返回信号,所以为了四旋翼飞行的安全,我使用第一种方法。

4、软件设计

(1)测距模块
只需要两个IO引脚就可以完成操作,先使用引脚1输出15us的高电平,再使用引脚2开启输入模式,从引脚2接收到第一个高电平开始,开启定时器计时,等待引脚2变为低电平,结束计时,通过计算得出测量距离。
计算公式:距离(cm)=(定时器周期 × 溢出次数+定时器当前计时时间)× 34(cm/ms)/2
音速=34cm/ms = 340m/s

(2)警报模块
可以通过判断距离,小于3m时,将距离数据经过运算当做蜂鸣器的频率,可以做到距离越近,蜂鸣器频率越快,小于1m时,将不再判断距离,蜂鸣器设为长鸣模式。

5、代码示例

#define HCSR04_PORT     GPIOA
#define HCSR04_CLK      RCC_APB2Periph_GPIOA
#define HCSR04_TRIG     GPIO_Pin_5
#define HCSR04_ECHO     GPIO_Pin_6

/**  
  *  功能:超声波使用的引脚和定时器初始化 Trig-》PA5,Echo-》PA6
  *  入口参数:无
  *  返回值:无
  */
void hcsr04_Init(void)
{  
  
    GPIO_InitTypeDef GPIO_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;     //生成用于定时器设置的结构体
	
    RCC_APB2PeriphClockCmd(HCSR04_CLK, ENABLE);
     
    GPIO_InitStructure.GPIO_Pin =HCSR04_TRIG;       //发送电平引脚
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;//推挽输出
    GPIO_Init(HCSR04_PORT, &GPIO_InitStructure);
    GPIO_ResetBits(HCSR04_PORT,HCSR04_TRIG);
     
    GPIO_InitStructure.GPIO_Pin = HCSR04_ECHO;     //返回电平引脚
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入
    GPIO_Init(HCSR04_PORT, &GPIO_InitStructure);  
	GPIO_ResetBits(HCSR04_PORT,HCSR04_ECHO);    
				 
	//定时器初始化 使用基本定时器TIM6
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6, ENABLE);   //使能对应RCC时钟
	//配置定时器基础结构体
	TIM_DeInit(TIM2);
	TIM_TimeBaseStructure.TIM_Period = (1000-1); //设置在下一个更新事件装入活动的自动重装载寄存器周期的值,计数到1000为1ms
	TIM_TimeBaseStructure.TIM_Prescaler =(72-1); //设置用来作为TIMx时钟频率除数的预分频值,1M的计数频率 1US计数
	TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1;//不分频
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式
	TIM_TimeBaseInit(TIM6, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位         
					
	TIM_ClearFlag(TIM6, TIM_FLAG_Update);   //清除更新中断,免得一打开中断立即产生中断
	TIM_ITConfig(TIM6,TIM_IT_Update,ENABLE);    //打开定时器更新中断
			
	NVIC_InitStructure.NVIC_IRQChannel = TIM6_IRQn;             //选择串口1中断
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  //抢占式中断优先级设置为1
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;         //响应式中断优先级设置为1
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;        //使能中断
	NVIC_Init(&NVIC_InitStructure);
		
    TIM_Cmd(TIM6,DISABLE);     
}


u16 msHcCount = 0;//ms计数
/**  
  *  功能:打开定时器,关闭定时器,发送Trig测距信号
  *  入口参数:
  *  返回值:
  */
static void Open_Timer_ForHc(void)        //打开定时器
{
	TIM_SetCounter(TIM6,0);//清除计数
	msHcCount = 0;
	TIM_Cmd(TIM6, ENABLE);  //使能TIMx外设
}

static void Close_Timer_ForHc(void)        //关闭定时器
{
	TIM_Cmd(TIM6, DISABLE);  //使能TIMx外设
}

static void Send_Trig_Signal(void)
{
	PAout(5)=1;
	delay_us(15);
	PAout(5)=0;
}

/**  
  *  功能:获取定时器时间
  *  入口参数:无
  *  返回值:无
  */

u32 Get_Echo_Timer(void)
{
	u32 t = 0;
	t = msHcCount*1000;//得到MS
	t += TIM_GetCounter(TIM6);//得到US
	TIM6->CNT = 0;  //将TIM6计数寄存器的计数值清零
	delay_ms(50);
	return t;
}

/**  
  *  功能:定时器6中断服务程序,保存超声波返回波时间在msHcCount中
  *  入口参数:无
  *  返回值:无
  */
void TIM6_IRQHandler(void)   //TIM6中断
{
        if (TIM_GetITStatus(TIM6, TIM_IT_Update) != RESET)  //检查TIM6更新中断发生与否
        {
                TIM_ClearITPendingBit(TIM6, TIM_IT_Update  );  //清除TIMx更新中断标志 
                msHcCount++;
        }
}

/**  
  *  功能:一次获取超声波测距数据 两次测距之间需要相隔一段时间,
  *		   隔断回响信号,为了消除余震的影响,取五次数据的平均值进行加权滤波。
  *  入口参数:无
  *  返回值:lengthTemp 滤波后的距离
  */

u32 Hcsr04_Get_Length(void )
{
        u32 time = 0;
        int i = 0;
        float lengthTemp = 0;
        float sum = 0;
        while(i!=5)
        {
			Send_Trig_Signal();
			while(GPIO_ReadInputDataBit(HCSR04_PORT,HCSR04_ECHO) == 0);      //等待接收口高电平输出
			Open_Timer_ForHc();        //打开定时器
			i = i + 1;
			while(GPIO_ReadInputDataBit(HCSR04_PORT,HCSR04_ECHO) == 1);
			Close_Timer_ForHc();        //关闭定时器
			time = Get_Echo_Timer();     //获取时间,分辨率为1US
			lengthTemp = ((float)time/58.0);//cm
			sum = lengthTemp + sum ;        
		}
        lengthTemp = sum/5.0;
		lengthTemp = lengthTemp*1000; 
        return (u32)lengthTemp;
}
/**  
  *  功能:超声波测距+蜂鸣器报警函数,成品函数(2021年2月9日17:12:07)
  *  入口参数:
  *  返回值:
  */
void Hcsr04_Data_Handle(u32 length)
{
	u16 a,b;
	a = length/1000;
	b = length%1000;
	if(a<100)//距离小于100cm,非常危险
		BEEP=1;
	else if(a<300)//距离小于300cm,即将碰撞
		BEEP_Flash(a);
	//LCD显示
	POINT_COLOR=BLUE;
	LCD_ShowString(30,150,200,16,16,"Distance is 000.000 CM");
	POINT_COLOR=RED;	
	LCD_ShowNum(30+96,150,a,3,16);
	LCD_ShowNum(30+128,150,b,3,16);
	
}

这样我们可以在主函数中直接调用两个函数的复合形式,就可以实现距离检测和报警功能。

//mian.c
Hcsr04_Data_Handle(Hcsr04_Get_Length());

6、实验效果

在这里插入图片描述
测量拍摄手机的距离,数据正确。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

STM32 四轴无人机的设计——基于HCSR04超声波模块的距离检测与警报设计 的相关文章

  • 2022高教社杯全国大学生数学建模竞赛B题解析(更新完结)

    2022高教社杯全国大学生数学建模竞赛B题解析 xff08 更新完结 xff09 题目解析前言问题一1 11 21 3问题二 题目 B 题 无人机遂行编队飞行中的纯方位无源定位 无人机集群在遂行编队飞行时 xff0c 为避免外界干扰 xff
  • c++的引用和指针原来是这种关系

    c 43 43 的引用和指针原来是这种关系 关于引用引用的概念 xff1a 引用的三种情况 xff1a 当引用作为返回值的时候 xff1a 引用和指针的区别 xff1a 关于引用 引用的概念 xff1a 引用不是新定义一个变量 xff0c
  • java面试题汇总一(会持续更新)

    不积跬步无以至千里 xff0c 这里会不断收集和更新Java基础相关的面试题 xff0c 目前已收集100题 1 什么是B S架构 xff1f 什么是C S架构 B S Browser Server xff0c 浏览器 服务器程序 C S
  • 【STM32】创建stm32工程中,各个文件夹及部分文件作用

    USER xff1a 存放工程文件 主函数文件 main c 以及其他包括system stm32f10x c等 CORE xff1a 用来存放核心文件和启动文件 OBJ xff1a 是用来存放编译过程文件以及hex 文件 STM32F10
  • Qt4.8类继承关系图(全网最全)

    一 概述 在学习Qt的时候快速的查询了解类的继承关系对我们的学习会有很大的帮助 xff0c 而网上流传的多是较老版本的 xff0c 并且是jpg格式 xff0c 不便于学习使用 xff0c 所以我就花了一些时间整理了这一套Qt类继承图 xf
  • Qt5.9类继承关系图(全网最全)

    一 概述 在学习Qt的时候快速的查询了解类的继承关系对我们的学习会有很大的帮助 xff0c 而网上流传的多是较老版本的 xff0c 并且是jpg格式 xff0c 不便于学习使用 xff0c 所以我就花了一些时间整理了这一套Qt类继承图 xf
  • Qt5.15类继承关系图(全网最全)

    一 概述 在学习Qt的时候快速的查询了解类的继承关系对我们的学习会有很大的帮助 xff0c 而网上流传的多是较老版本的 xff0c 并且是jpg格式 xff0c 不便于学习使用 xff0c 所以我就花了一些时间整理了这一套Qt类继承图 xf
  • Qt6.3类继承关系图(全网最全)

    一 概述 在学习Qt的时候快速的查询了解类的继承关系对我们的学习会有很大的帮助 xff0c 而网上流传的多是较老版本的 xff0c 并且是jpg格式 xff0c 不便于学习使用 xff0c 所以我就花了一些时间整理了这一套Qt类继承图 xf
  • DSPF28335 SCI FIFO串口通讯

    在工作过程中 xff0c 通过串口进行上位机与控制器之间进行数据的传输 xff0c 标准的串口通讯容易造成数据的丢失和内存堆满的现象 xff0c 便使用SCI中的FIFO对数据进行中断处理 一 串口通信基本知识 F28335 处理器共有 3
  • 树莓派4B:控制步进电机

    记录一下驱动两相四线步进电机的过程 文章目录 准备阶段接线阶段树莓派python程序 准备阶段 准备以下物品 xff0c 淘宝都可以买到 57步进电机 xff08 两相四线 xff09 电源开关 xff08 220v转24v xff0c 3
  • 2019全国大学生电子设计竞赛(电赛)回忆录

    我给大家整理了历年电赛的题目和材料清单 xff0c 大家可以对比着看 关注微信公众号 Opencv视觉实践 xff0c 回复 电赛资料 领取 电赛是我一进大学就听学长们无数此提起的一场四天三夜的盛会 xff0c 我也自大一开始便期待着 xf
  • 【网络】HTTP中的GET方法和POST方法

    1 GET方法 xff1a 获取资源 GET方法用来请求访问已被URL识别的资源 指定的资源经服务器端接续后返回内容 也就是说 xff0c 如果请求的资源是文本 xff0c 那就保持原样返回 xff1b 如果像是CGI xff08 Conm
  • 类的6个默认成员函数

    类的成员函数 1 构造函数2 析构函数3 拷贝构造函数4 深浅拷贝5 运算符重载赋值运算符重载的特性 xff1a 1 构造函数 xff08 构造函数的调用发生在对象的创建过程中 xff0c 所以会牵扯到this指针传对象的地址问题 另外创建
  • 通过onvif抓取海康摄像头图片,以及解决海康摄像头抓取图片需要验证问题,实现摄像头一段时间换一个地方的同时抓取一张图片。

    1 实现海康摄像头的图片的抓取 思路 xff1a 1 首先获取图片的url xff0c 2通过java实现图片的下载 1 使用onvif获取图片的url 首先获取OnvifDevice的对象 OnvifDevice od 61 new On
  • 超详细电烙铁如何使用?

    电烙铁是电子硬件工程师的一个必备工具了 它主要用来焊接一些电子元器件到PCB主板上 xff0c 用来做一些维修 xff0c 验证 xff0c 分析等等 那这么一个家伙要如何使用呢 xff1f 首先来看一个电烙铁的基本外观 xff1a 它一般
  • Makefile和cmake学习

    一 Makefile 一 什么是Makefile 1 Makefile 可以简单的认为是一个工程文件的编译规则 xff0c 描述了整个工程的编译和链接等规则 其中包含了那些文件需要编译 xff0c 那些文件不需要编译 xff0c 那些文件需
  • Ros下编译某功能包时出现很多“未定义的引用”的解决方法(本人版本是ubuntu18.04)

    问题描述 xff1a 在工作空间下编译某功能包时出现 在函数 中未被定义等问题 xff0c 如图所示 解决方案 xff1a 第一步 xff1a 查看自己的gcc版本和g 43 43 版本是否一致 xff0c 打开终端输入以下命令 gcc v
  • STM32—串口通讯详解

    串口通讯目录 物理层协议层USART简介开发板与上位机的连接代码讲解 xff1a 一 初始化结构体二 NVIC配置中断优先级三 USART配置函数讲解四 传输数据的函数 xff1a 1 发送一个字节2 发送字符串3 重定向printf函数发
  • 二进制数的算术运算和逻辑运算

    算术运算 二进制数加法采用逢二进一 减法采用借一作二 十六进制数加法采用逢十六进一 减法采用借一作十六 1位八进制可以写成3位二进制 xff0c 因为3位二进制可以表示十进制范围0 7 xff0c 也就是1位八进制的表示范围 1位十六进制可
  • STM32串口接收一帧数据方法(处理一帧数据中所需内容)

    stm32支持接受单个数据或者一帧数据 xff0c 若配置单个数据接收中断的话 xff0c 会出现接收包丢包 xff0c 数据不完整的情况 xff01 因此在stm32的串口中断中 xff0c 还有一个IDLE中断 xff0c 用来产生串口

随机推荐

  • 使用火狐拓展插件以及运行脚本的超详细方法

    1 首先我们需要下载火狐浏览器 火狐浏览器官网 xff1a 火狐浏览器 打开后默认页面 xff1a 2 如图所示点击右上角打开菜单 xff0c 然后点击附加组件 xff1a 3 进入该页面后在搜索框输入 xff1a tampermonkey
  • static关键字在c/c++中的作用

    static关键字在c c 43 43 中的作用 static在c语言中有三个作用 xff1a 修饰函数 修饰局部变量 修饰全局变量 被static修饰的全局变量被称之为静态全局变量 静态全局变量和全局变量在存储方式上是一致的 xff0c
  • licurl API

    这个文档是小编在curl官网上使用谷歌翻译翻译的 xff0c 详细信息看官网 curl 描述 这是关于C程序中如何使用libcurl的简单概述 xff0c libcurl程序的使用需要通过以下5个方面libcurl easy libcurl
  • C语言:最大公约数详解

    C语言 xff1a 最大公约数详解 Hello xff01 小伙伴们大家好 xff0c 几天不见了 xff0c 今天给大家分享一下C语言中求最大公约数的三种方法 在开始分享前 xff0c 让我们先来看看什么是最大公约数 xff1a 最大公约
  • Java:遍历数组的三种方法

    1 for循环遍历数组 用for循环遍历数组是很常见的一种方法 xff0c Java语言中通过数组的length属性可获得数组的长度 span class token keyword package span demo span class
  • Linux:进程创建详解

    Linux xff1a 进程创建详解 进程创建1 fork函数写时拷贝调用失败的原因 2 vfork函数 进程终止正常退出的三种方法 exit和exit的区别 进程创建 现在我们已经知道进程的概念以及怎样创建一个进程 xff0c 接下来我们
  • Linux:简单理解文件系统内附Linux内核设计与实现PDF下载地址

    简单理解文件系统 文件系统ext2文件系统文件的存储文件的获取 文件系统 文件存储的方式有线性存储和离散存储两种 xff0c 线性存储可能会导致磁盘的利用率降低 xff0c 产生磁盘碎片 xff0c 离散存储方式会提高程序对磁盘的利用率 x
  • Linux:网络编程——UDP编程的前期准备

    Linux xff1a 网络编程 UDP编程的前期准备 字节序TCP与UDP的区别UDP编程的流程1 创建套接字创建套接字的意义 2 绑定地址信息 xff08 1 xff09 绑定ip和端口 xff08 2 xff09 函数 3 UDP发送
  • Xshell连接虚拟机时报错Could not connect to ‘192.168.115.133‘ (port 22): Connection failed.

    Xshell连接虚拟机时报错Could not connect to 192 168 115 133 port 22 Connection failed 今天突然想把拨号连接换成宽带连接 结果问题就来了 用下Xshell连接虚拟机的时候一直
  • Linux:简单三步,教你解决ping:www.baidu.com:未知的名称或者服务

    Linux xff1a 简单三步 xff0c 教你解决ping www baidu com 未知的名称或者服务 1 在VMware Workstation中点开编辑 xff0c 找到虚拟网络编辑器2 直接点击更改设置3 点击还原默认设置 x
  • C++:从结构体开始理解this指针

    C 43 43 xff1a 从结构体开始理解this指针 span class token macro property span class token directive keyword include span span class
  • 原来直接插入排序这么简单(附完整代码)

    原来插入排序这么简单 附完整代码 xff09 基本思想带哨兵位的插入排序二分插入排序完整代码 基本思想 做一件是之前我们总是要先知道我们做这件的核心思想 xff0c 这样会让我们做事的效率得到有效的提高 xff1b 现在我们来看看插入排序算
  • 一张图带你了解c/c++的内存分布

    c c 43 43 的内存分布 对照这些代码查看对应内存分布 xff1a span class token keyword int span globalVar span class token operator 61 span span
  • 用一个例子理解希尔排序

    用一个例子理解希尔排序 思想代码 思想 希尔排序是把序列按下标的一定增量分组 xff0c 对每组使用直接插入排序算法排序 xff1b 随着增量的逐渐减少 xff0c 每组包含的关键词越来越多 xff0c 当增量减至1时 xff0c 整个序列
  • c++ pi

    C 43 43 中表示pi的方法有两种 xff08 1 xff09 math库中利用arctan函数算出 span class token function tan span span class token punctuation spa
  • 【非数值数据的编码】西文字符和汉字的编码表示 汉字国标码、机内码详细理解

    西文字符和汉字的编码表示 西文字符概念ASCII码表特点 西文字符特点西文字符表示 xff08 常用编码为7位ASCII码 xff09 西文字符操作 汉字字符编码形式输入码字符集与汉字内码汉字的区位码汉字的国标码汉字内码 汉字的字模点阵码和
  • 修改centos7系统用户最大线程数和最大文件数限制

    修改centos7系统用户最大线程数和最大文件数限制 需要注意 xff0c 不同版本的Linux系统所对应的修改方法不同 ulimit 的作用 ulimit xff1a 显示 xff08 或设置 xff09 用户可以使用的资源的限制 xff
  • (已全部解决)ubantu18运行vins遇到的问题

    1 sudo rosdep init时报错 xff1a 打开hosts文件 sudo gedit etc hosts 在文件末尾添加 151 101 84 133 raw githubusercontent com 保存后退出再尝试 sud
  • ROS只使用思岚A1激光雷达进行slam建图

    使用思岚A1激光雷达 A1的ros功能包下载地址 xff1a https github com slamtec rplidar ros 因为只有激光雷达 xff0c 需要其做SLAM的话 xff0c 就需要有一个laser scan mat
  • STM32 四轴无人机的设计——基于HCSR04超声波模块的距离检测与警报设计

    1 系列总述 从现在开始将会进入四轴无人机的制作 xff0c 我是第一次制作四旋翼 xff0c 从前没有接触过这个方面 xff0c 手边的参考资料只有一本四轴的设计书和正点原子F405飞控的源码 xff0c 所以代码逻辑设计方面肯定有所欠缺