mix_transformer_demo

2023-10-27

代码

原代码为mix_transformer 官方代码。
我改了一些地方做适配,目的是做研究,并了解一下mix_transformer.
原来的代码的segformer_head 的normalize那里的config的type是SyncBN,而这要求多GPU,我目前是单GPU,就改成了BN,在468行。





# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# ---------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
from mmseg.models.builder import BACKBONES
from mmseg.utils import get_root_logger
from mmcv.runner import load_checkpoint
import math
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmseg.ops import resize


class MLP(nn.Module):
    """
    Linear Embedding
    """
    def __init__(self, input_dim=2048, embed_dim=768):
        super().__init__()
        self.proj = nn.Linear(input_dim, embed_dim)

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        x = self.proj(x)
        return x

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = self.fc1(x)
        x = self.dwconv(x, H, W)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))

        return x


class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size) # 7 -> (7, 7)

        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.LayerNorm(embed_dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2) # n c h w -> n c h*w -> n h*w c
        x = self.norm(x) # layer normalization

        return x, H, W # (n h*w c) h w


class MixVisionTransformer(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths

        # patch_embed
        self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
                                              embed_dim=embed_dims[0])
        self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
                                              embed_dim=embed_dims[1])
        self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
                                              embed_dim=embed_dims[2])
        self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
                                              embed_dim=embed_dims[3])

        # transformer encoder
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        self.block1 = nn.ModuleList([Block(
            dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[0])
            for i in range(depths[0])])
        self.norm1 = norm_layer(embed_dims[0])

        cur += depths[0]
        self.block2 = nn.ModuleList([Block(
            dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[1])
            for i in range(depths[1])])
        self.norm2 = norm_layer(embed_dims[1])

        cur += depths[1]
        self.block3 = nn.ModuleList([Block(
            dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[2])
            for i in range(depths[2])])
        self.norm3 = norm_layer(embed_dims[2])

        cur += depths[2]
        self.block4 = nn.ModuleList([Block(
            dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[3])
            for i in range(depths[3])])
        self.norm4 = norm_layer(embed_dims[3])

        # classification head
        # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)

    def reset_drop_path(self, drop_path_rate):
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
        cur = 0
        for i in range(self.depths[0]):
            self.block1[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[0]
        for i in range(self.depths[1]):
            self.block2[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[1]
        for i in range(self.depths[2]):
            self.block3[i].drop_path.drop_prob = dpr[cur + i]

        cur += self.depths[2]
        for i in range(self.depths[3]):
            self.block4[i].drop_path.drop_prob = dpr[cur + i]

    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        outs = []

        # stage 1
        x, H, W = self.patch_embed1(x)  # (n h*w c) h w
        # print("stage 1, x.shape:{}, h:{}, w:{}".format(x.shape, H, W)) 
        for i, blk in enumerate(self.block1):
            x = blk(x, H, W)
        x = self.norm1(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 2
        x, H, W = self.patch_embed2(x)
        for i, blk in enumerate(self.block2):
            x = blk(x, H, W)
        x = self.norm2(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 3
        x, H, W = self.patch_embed3(x)
        for i, blk in enumerate(self.block3):
            x = blk(x, H, W)
        x = self.norm3(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        # stage 4
        x, H, W = self.patch_embed4(x)
        for i, blk in enumerate(self.block4):
            x = blk(x, H, W)
        x = self.norm4(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)

        return outs

    def forward(self, x):
        print("x.shape:{}".format(x.shape))
        x = self.forward_features(x)
        # x = self.head(x)

        return x


class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).view(B, C, H, W)
        x = self.dwconv(x)
        x = x.flatten(2).transpose(1, 2)

        return x



@BACKBONES.register_module()
class mit_b0(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b0, self).__init__(
            patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


@BACKBONES.register_module()
class mit_b1(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b1, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


@BACKBONES.register_module()
class mit_b2(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b2, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


@BACKBONES.register_module()
class mit_b3(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b3, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


@BACKBONES.register_module()
class mit_b4(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b4, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


@BACKBONES.register_module()
class mit_b5(MixVisionTransformer):
    def __init__(self, **kwargs):
        super(mit_b5, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)


class SegFormerHead(nn.Module):
    """
    SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
    """
    def __init__(self, feature_strides, in_channels, embedding_dim, input_transform='multiple_select', in_index=[0, 1, 2, 3], dropout_ratio=0.1, num_classes=4):
        super(SegFormerHead, self).__init__()  # input_transform='multiple_select'
        self.feature_strides = feature_strides
        self.input_transform = input_transform
        self.in_index = in_index

        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = in_channels


        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)

        self.linear_fuse = ConvModule(
            in_channels=embedding_dim*4,
            out_channels=embedding_dim,
            kernel_size=1,
            norm_cfg=dict(type='BN', requires_grad=True) # type='SyncBN'-> type='BN'
        )

        self.linear_pred = nn.Conv2d(embedding_dim, num_classes, kernel_size=1)
        self.dropout = nn.Dropout2d(dropout_ratio)


    def _transform_inputs(self, inputs):
        """Transform inputs for decoder.

        Args:
            inputs (list[Tensor]): List of multi-level img features.

        Returns:
            Tensor: The transformed inputs
        """

        if self.input_transform == 'resize_concat':
            inputs = [inputs[i] for i in self.in_index]
            upsampled_inputs = [
                resize(
                    input=x,
                    size=inputs[0].shape[2:],
                    mode='bilinear',
                    align_corners=self.align_corners) for x in inputs
            ]
            inputs = torch.cat(upsampled_inputs, dim=1)
        elif self.input_transform == 'multiple_select':
            inputs = [inputs[i] for i in self.in_index]
        else:
            inputs = inputs[self.in_index]

        return inputs

    def forward(self, inputs):
        x = self._transform_inputs(inputs)  # len=4, 1/4,1/8,1/16,1/32
        c1, c2, c3, c4 = x

        ############## MLP decoder on C1-C4 ###########
        n, _, h, w = c4.shape

        _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3])
        _c4 = resize(_c4, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3])
        _c3 = resize(_c3, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3])
        _c2 = resize(_c2, size=c1.size()[2:],mode='bilinear',align_corners=False)

        _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3])

        _c = self.linear_fuse(torch.cat([_c4, _c3, _c2, _c1], dim=1))

        x = self.dropout(_c)
        x = self.linear_pred(x)
        # x = x.clamp(0., 1.)

        return x

mitb1 = mit_b1().cuda()


n, c, h, w = 2, 3, 512, 512
x = torch.randn((n, c, h, w), dtype=torch.float32)
x = x.cuda()
y = mitb1.forward(x)

# print(y[0].shape)
# print(y[1].shape)
# print(y[2].shape)
# print(y[3].shape)

# x.shape:torch.Size([2, 3, 512, 512])
# torch.Size([2, 64, 128, 128])
# torch.Size([2, 128, 64, 64])
# torch.Size([2, 320, 32, 32])
# torch.Size([2, 512, 16, 16])

decoder = SegFormerHead(feature_strides=[4, 8, 16, 32], in_channels=[64, 128, 320, 512], embedding_dim=256)
decoder = decoder.cuda()
y = decoder.forward(y)
print(y.shape)

# torch.Size([2, 4, 128, 128])



本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

mix_transformer_demo 的相关文章

随机推荐

  • VLAN虚拟局域网

    一 虚拟局域网 VLAN Virtual Local Area Network 定义 VLAN 是一种将局域网内的设备逻辑地划分成一个个网段从而实现虚拟工作组的技术 VLAN 能够隔离广播域 VLAN 内的主机之间可以直接通信 而 VLAN
  • “Argument list too long”解决方法

    1 背景 Linux下使用cp mv rm等命令时经常会碰到 Argument list too long 错误 这主要是因为这些命令的参数太长 即文件个数过多 2 解决方案 Argument list too long 这个问题的解决主要
  • 升压电路(BOOST)与降压电路(BUCK)

    一 电路中产生电流的条件是 1 电路里必须有电源供电 2 电路必须形成闭合回路 降压元器件 升降压电路构成的核心元器件 1 电感 储存能量 电感是无法突变的 工作状态是线性的 2 二极管 3 mos管 首先先分清楚mos是N mos还是P
  • 真题详解(归并)-软件设计(五十三)

    真题详解 UML部署图 软件设计 五十二 https blog csdn net ke1ying article details 130233656 语句覆盖 lt 判定覆盖 lt 条件覆盖 lt 路径覆盖 2 ISO IEC 9126软件
  • 互联网支付系统整体架构详解(转)

    https www cnblogs com zhjh256 p 6763978 html 在互联网产品运营中 有很多小伙伴或许会遇到这样的困扰 产品好不容易推出来了 流量成本节节攀升 用户的活跃度 留存度却持续下降 因此在瞬息万变的互联网产
  • tomcat和nginx的日志记录请求时间

    当系统卡顿时候 我们需要分析时间花费在哪个缓解 项目的后端接口可以记录一些时间 此外 在我们的tomcat容器和nginx网关上也可以记录一些有关请求用户 请求时间 响应时间的数据 可以提供更多的信息以便于排查问题 1 tomcat日志 s
  • 2022十四届蓝桥杯校赛题解(Python大学组)

    2022十四届蓝桥杯校赛题解 Python大学组 填空题 二进制2022 经历天数 考查datetime库 16进制数 优先动态规划 不同质数查找 编程题 拷贝问题 筛选重复单词 回文串 图形动态规划 交换代价问题 附录 常见方法 考试直接
  • Linux统计代码量命令cloc

    记录一下Linux中一个非常好用的代码量统计命令 cloc 安装步骤 sudo apt get install cloc 使用方法 进入到要统计的工程根目录 cloc 运行结果
  • 【以太坊源码】mpt实现

    转载自 click here trie encoding go encoding go主要处理trie树中的三种编码格式的相互转换的工作 三种编码格式分别为下面的三种编码格式 KEYBYTES encoding这种编码格式就是原生的key字
  • C语言字符串及其函数

    C语言中没有类似于C 或Java中的string类型 如果要在C中表示字符串 可用字符数组的形式 数组的概念可戳此链接了解 在C 中 string类库可以更简单的表示和使用字符串 可戳此链接了解string类 C语言中字符串是以空字符 0结
  • FRP中安全地暴露内网服务

    导读 之前的教程介绍的frp内网穿透都是用tcp模式 但是tcp模式是直接把端口映射到公网IP上 很容易被扫描爆破 还是存在一定的风险 我们可以使用frp提供的stcp模式来避免公开暴露端口 同时访问者也要运行一个frpc作为接收转发 fr
  • angular4中ngModel双向绑定在限制输入情况下与value值不一致的问题及尝试的解决方法

    近期公司的一个后台项目在使用angular4进行开发 随着项目的推进和迭代开发 需要对有的input框的value值进行限制输入 例如目前项目的一些input框只允许输入数字和 这两种形式的内容 就在input标签的中添加了 keyup 属
  • html中怎么引入外部css文件路径,怎么引入外部css文件样式?

    怎么引入外部css文件样式 来给html标记添加各种样式 下面本篇文章就来给大家介绍一下引入外部css文件样式的方法 希望对大家有所帮助 方法1 使用来引入外部的css文件 在网页的标签对中使用标记来引入外部样式表文件 使用html规则引入
  • ddl是什么意思网络语_ddl是什么意思(网络语ddl是什么梗)

    每文一言 潜能 我等皆具之资 01 DDL 其真身为deadline 又名死亡之线 常现于众学士之眼 或如任务上缴之日 排它念 存己欲 三刻之内便可将之 绳之以法 实乃天网恢恢 疏而不漏 亦如大考之时 废寝忘食 通宵达旦 以一目十行之势 饱
  • C++默认模板自变量(Default Template Arguments)

    一 类模板的默认模板自变量 我们可以对 class templates 定义其 template parameters 的默认值 这称为 default template arguments 默认模板自变量 默认模板自变量值甚至可以引用前一
  • tomcat重要参数调优

    一 3个参数搞定并发配置 作为一个能承接高并发互联网请求的Web容器 首当其冲的当然是海量请求的冲击 幸运的是Tomcat支持NIO 我们可以通过调整线程数和并发配置 让它表现出最佳的性能 maxThreads tomcat接收客户端请求的
  • MySQL基础(附练习题+答案)

    一 数据库简介 1 数据库系统 1 1数据库 DataBase 简称DB 指的是长期保存在计算机上的一些数据 按照一定的规则组织起来 意义 可以被多个用户或者多个应用共享 存储 维护和管理数据的集合 mysql sqlite 1 2数据库管
  • STM32系列(HAL库)——F103C8T6通过MPU6050+DMP姿态解算读取角度及温度

    1 软件准备 1 编程平台 Keil5 2 CubeMX 3 XCOM 串口调试助手 4 文件资料包 点击跳转下载 2 硬件准备 1 一个捡来的MPU6050 2 F1的板子 本例使用经典F103C8T6 3 ST link 下载器 4 U
  • YOLO数据集实现数据增强的方法(裁剪、平移 、旋转、改变亮度、加噪声等)

    前言 最近我在做论文实验时从MSCOCO数据集中筛选了符合条件的1260张图片 但数据样本太少了 于是我就利用数据增强的方法实现了带标签的样本扩充 最后扩充为7560张图片 本文就来记录一下过程 有不懂的地方欢迎留言噢 目录 前言 一 什么
  • mix_transformer_demo

    代码 原代码为mix transformer 官方代码 我改了一些地方做适配 目的是做研究 并了解一下mix transformer 原来的代码的segformer head 的normalize那里的config的type是SyncBN