运算放大器(运放)选型、参数分析以及应用OPA2350

2023-11-10

1、运放选型速记指南 - 知乎

本文章旨在总结备份、方便以后查询,由于是个人总结,如有不对,欢迎指正;另外,内容大部分来自网络、书籍、和各类手册,如若侵权请告知,马上删帖致歉。

运放,作为硬件电路上不可缺失的一部分,生活中也经常出现,因此在这里记录并稍微分析一下集成运放选型时所关注的参数以及一些基本应用,本文以 TI的 OPA2350为例

一般,我们在 Datasheet上面都会看到很多的参数,可能看起来长篇大论,但是我们需要的参数也就那几个。先放出 OPA2350这个 IC的 Datasheet先,下面的数据都是基于里面来分析:https://atta.szlcsc.com/upload/public/pdf/source/20150811/1457707345966.pdf

我们先来分析最简单的

看图的标题,顾名思义就是这个IC的极限参数,主要用于确定需要为运放提供多少 V电压啊、最大电流不能超过多少啊等等;然后在这些数据中,一些我们需要值得注意的极限参数也圈了出来

接下来就正式分析运放的设计参数  额,为了更好的解析参数的含义,先来重新认识一下基本运放的简图(图一)、输入端的结构(图二)以及最最最基本的反向运算电路(图三)(下面这几张不是Datasheet里的图哈,别在那里找了,然后结构图这里只是为了配合一下下面参数的分析,所以找了些最基本的图,至于本文介绍的这款运放,你可以看下Datasheet里面的示意图,不可能这么简单的,不过基本原理就是这样)

(图一)

(图二)

(图三)

好了,接着之前的来详细分析它(OPA2350)的电气参数特性吧,在这里可以把它的参数部分分成输入、输出以及其他参数,若是加上之前的极限参数部分那就可以分成四个部分,废话不多说了,先看输入部分的参数吧

输入失调电压 Vos:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。运放的输入失调电压来源于运放差分输入级两个管子的不匹配,因为受工艺水平的限制,这个不匹配是不可避免,所以为了使运放的输出电压等于 0,必需在运放两个输入端加一个小的电压以达到平衡,而这个需要加的小电压即为输入失调电压 Vos


输入失调电压的温度漂移(简称输入失调电压温漂):输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在 ±10~20μV/℃之间,精密运放的输入失调电压温漂小于 ±1μV/℃。


输入偏置电流 Ib:是指第一级放大器输入晶体管的基极直流电流,同时也定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在 ±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于 1nA。


输入偏置电流的温度漂移(简称输入偏置电流温漂):跟输入失调电压温漂一样,因为温度的影响造成电流大小漂移,后面结合曲线图来分析


输入失调电流 Ios:定义为两个差分输入端偏置电流的误差。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。由于工艺上很难做到两个管子的完全匹配,所以这两个管子Q1和Q2的基极电流总是有这么点差别(可以看下上面图二的结构),也就是输入的失调电流。注意区分输入偏置电流,后面说
共模输入电压Vcm:指运放正常工作时输入电压的范围,如输入电压过高或者过低,会造成运放电路的不同的MOS管进如线性区,从而使电路不能正常的工作。其中,最大共模输入电压限制了输入信号中的最大共模输入电压范围,在有干扰的情况下,需要在电路设计中注意这个问题。
输入阻抗:
1、差模输入阻抗

差模输入阻抗定义为,运放工作在线性区时,两输入端的电压变化量与对应的输入端电流变化量的比值。差模输入阻抗包括输入电阻和输入电容,在低频时仅指输入电阻。

2、共模输入阻抗

共模输入阻抗定义为,运放工作在输入信号时(即运放两输入端输入同一个信号),共模输入电压的变化量与对应的 输入电流变化量之比。在低频情况下,它表现为共模电阻。

我们再来输出部分的参数:

输出电压摆幅(Output Voltage Swing):指当运放工作于线性区时,在特定负载条件下,输出的最大值和最小值之差,是输出能力的一种指标;简单的理解就是输出电压的范围。除低压运放外,一般运放的输出电压摆幅大于±10V。对于一般运放的输出电压摆幅是不能达到电源电压,这是由于输出级设计造成的;但是现代的部分低压运放的输出级都做了特殊处理,使得在10kR负载时,输出电压摆幅接近到电源电压的50mV以内(这款 OPA2350就是轨到轨,看上面的图),所以称为满幅输出运放,又称为轨到轨(raid-to-raid)运放(在这里埋一个知识点,等下再详细说下)。需要注意的是,运放的输出电压摆幅与负载有关,负载不同,输出电压摆幅也不同;运放的正负输出电压摆幅不一定相同。对于实际应用,输出电压摆幅越接近电源电压越好,这样可以简化电源设计。但是现在的满幅输出运放只能工作在低压,而且成本较高。
输出电流:顾名思义,就是输出端的电流大小
 

然后我们来看下图中对第 4跟第 5点的解释:

先解析第 4点:它说明了这个摆幅是相对电源电压(±V)的,而这里的轨指的是电源轨;

至于第 5点:它表明这个输出电流需要结合 OUTPUT VOLTAGE SWING vs OUTPUT CURRENT 这个曲线图去解释

最后我们来看看其他的一些重要参数

共模抑制比:定义为放大电路对差模信号的电压增益与对共模信号的电压增益之比的绝对值。共模抑制比是一个极为重要的指标,它能够抑制差模输入中的共模干扰信号;因为我们要抑制零漂所以共模电压增益越小越好,而差模电压增益越大越好,所以希望 CMRR越大越好,CMRR越大,放大电路的性能越优良。由于共模抑制比很大,大多数运放的共模抑制比一般在数万倍或更多,用数值直接表示不方便比较,所以一般采用分贝方式记录和比较。一般运放的共模抑制比在 80~120dB之间。
开环增益Aol:在不具负反馈情况下(开环路状况下),运算放大器的放大倍数称为开环增益,记作 Aol,有的 datasheet上写成:Large Signal Voltage Gain。Aol的理想值为无限大,一般约为数千倍至数万倍,其表示法有使用 dB及 V/mV等。
增益带宽:
1、增益带宽积(GBW):是放大器带宽和带宽增益的乘积。这项参数主要是针对运算放大器,它可以让电路设计人员通过指定的器件频率(或频带)来确定其最大增益,反过来也同样适用。

2、单位增益带宽:运放的闭环增益为 1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降 3db(或是相当于运放输入信号的 0.707)所对应的信号频率。这项参数用于小信号处理的运放选型。

一般运放的都是用增益带宽积 GBW来表征其处理交流信号的能力,是一个常数。单位增益带宽是指在运放电路闭环增益为0db时的带宽。

压摆率(转换速率):运放的压摆率(SR)是与运放的增益带宽积(GBW)同等重要的一个参数;可以理解为,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得输出信号的最大变化速度;反映的是一个运算放大器在速度方面的指标,表示运放对信号变化速度的适应能力,是衡量运放在大幅度信号作用时工作速度的参数。转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率 SR<=10V/μs,高速运放的转换速率 SR>10V/μs。目前的高速运放最高转换速率 SR达到 6000V/μs。这项参数用于大信号处理的运放选型。
增益带宽积反映小信号放大信号的带宽问题,压摆率反映大信号放大信号的问题,一般大信号的带宽都要小于带宽增益积的值。

恩,基本参数已经分析完了,那就开始填回之前所挖的“坑”(蓝色标记点)吧!

1、输入偏置电流温漂

图:

运放的输入偏置电流会随着温度的变化而变化,从上图所知,输入偏置电流会在高于 25度时快速的升高。在 100度时的输入偏置电流是 25度时的几百倍。如果设计的系统是在很宽的温度范围内工作,这一因素不得不考虑。

2、输入偏置电流与输入失调电流

运放的输入偏置电流: 为了使运放输入级放大器工作在线性区,所必须输入的一个直流电流,在双极晶体管输入的运放,偏置电流就是输入管的基极电流, 在MOS管输入的运放是指栅极漏电流.

输入失调电流: 与输入失调电压一样,都是描述运放差分输入的对称性的。理想的差分输入应该是完全对称的,但由于设计和工艺过程的偏差,正负两个输入端的特性不会完全相同.这两个失调参数的定义是,当输出为0时两个输入端的输入电压差(失调电压)和输入电流---即偏置电流的差(失调电流), 显然在理想状态下它们都应该为0。

输入失调电流=|IB1-IB2| 输入偏置电流=1/2(IB1+IB2) IB1、IB2为输入级差放管的输入偏置电流

3、轨到轨(Rail to Rail)

Rail to Rail翻译成汉语即 “轨到轨”,指器件的输入输出电压范围可以达到电源电压。但是不是所有的rail to rail 运放输入和输出都接近电源,有的只是输入有的只是输出,当然也有的输入输出都是rail to rail 的,该类运放的最大特点就是可以扩展信号的电压范围,但一般输出电流较小,在大电流的情况下并不能保证rail to rail,所以现在分析的这款运放是轨到轨输出,输入并没有轨到轨

分析了这么多参数(其实还有很多参数的,上面说的只是基本都要用到的),然后让我们再来了解一下常用的运放应用电路

再附一下需要用到的设计公式

最后,下面的三个链接可以更详细的解释运放的原理,同时,这三个网站对于学习硬件知识也是很有帮助

2、运算参数的详细解释和分析【TI FAE 分享】

3、运算放大器原理设计解读

4、运放设计经验谈:运放十坑

 1、运放选型速记指南 - 知乎
————————————————
版权声明:本文为CSDN博主「夏沫の浅雨」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_42992084/article/details/103623073

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

运算放大器(运放)选型、参数分析以及应用OPA2350 的相关文章

  • 电子元器件/模块供应商汇总

    晶振 WIFI MLCC电容
  • 3.5mm 音频接口类型说明(3极和4极)耳机接口

    3 5mm 音频接口类型说明 背景描述 有的时候我们将非原配的耳机插入手机或电脑 发现音质非常差或只有某部分音频 大多是因为耳机与设备的音频接口类型不同导致的 接口类型 现在常见的耳机接口都是 3 5mm 音频接口 分为 3 pole 3节
  • 继电器驱动电路(各种单片机、CD4013触发器驱动电路图)

    继电器工作原理详解 附3种驱动电路图 继电器原理及分类 继电器知识点大全 看完一定有收获 线圈 继电器是一种电子控制器件 它具有控制系统 又称输入回路 和被控制系统 又称输出回路 通常应用于自动控制电路中 它实际上是用较小的电流去控制较大电
  • 经典场效应管如何快速关断技巧-KIA MOS管

    mos管的快速关断原理 R4是Q1的导通电阻没有Q1就没有安装的必要了 当低电位来时Q1为泻放扩流管 功率MOS管怎样关断 能否用PWM实现 怎样实现 功率mosfet的三个端口 G极 D极 S极 G极控制mosfet的开通 关断 给GS极
  • NPN和PNP 的电流方向 、大小关系 、电压偏置

    电流流向 NPN三极管 电流方向为基极流向发射极 驱动电流从基极流入 集电极流向发射极 PNP三极管 电流方向为发射极流向基极 驱动电流从基极流出 发射极流向集电极 PNP的电流方向是从下往上流的 但是在实际电路图中 大多还是发射极连接高电
  • IXFP4N100参数及代换型号 数据表(PDF)中文资料

    IXFP4N100参数及代换KNX41100A N沟道MOSFET KNX41100A漏源击穿电压高达1000V 漏极电流最大值为2A 可替换2sk119 主适用于工业三相智能电表 LED照明驱动电源 充电桩 光伏逆变器等辅助电源 IXFP
  • 带你理解运算放大器

    复习一下电子设计基本元器件 运算放大器 矜辰所致 目录 前言 一 运放基本说明 1 1 基本认识 1 2 运放中的电流 1 3 运放工作特性 二 负反馈 2 1 什么是负反馈 2 2 为什么要引入负反馈 负反馈电路分析 2 3 正反馈 三
  • 功率MOSFET的正向导通等效电路

    转自 功率MOSFET的正向导通等效电路 电路设计论坛 电子技术论坛 广受欢迎的专业电子论坛 MOSFET 一 基础 Infinity lsc的博客 CSDN博客 MOSFET 二 米勒效应 Infinity lsc的博客 CSDN博客 米
  • 开漏输出、推挽输出的区别

    前言 background 测试相关设备引脚输出 使用示波器时发现部分引脚需外接上拉电阻至高电平才能在示波器观察到高阻态 为了深究其中原理 查阅了相关资料 发现知乎中有一篇对这两种输出描述得清晰易懂的文章 此时才真正了解信号高阻态和高电平输
  • 运放的虚短和虚断以及分类

    放大器定义 能实现信号 功率放大的器件 称为放大器 英文为Amplifier 以放大器为核心 能实现放大功能的电路组合 称为放大电路 放大器的种类 全部放大器被分为三种 晶体管放大器 运算放大器和功能放大器 晶体管及其放大电路的复杂 从静态
  • MOS管过大电流时关断为什么会出现尖峰电压

    尖峰电压属于浪涌电压里的一种 持续时间极短但数值很高 电机 电容器和功率转换设备 如变速驱动器 是产生尖峰电压的主要因素 雷电击中室外的输电线路也会引起极危险的高能瞬变 它们会在低压电源电路中定期发生 峰值可能会达到数千伏 处理方法 为了防
  • 运算放大器(运放)选型、参数分析以及应用OPA2350

    1 运放选型速记指南 知乎 本文章旨在总结备份 方便以后查询 由于是个人总结 如有不对 欢迎指正 另外 内容大部分来自网络 书籍 和各类手册 如若侵权请告知 马上删帖致歉 运放 作为硬件电路上不可缺失的一部分 生活中也经常出现 因此在这里记
  • 电子元器件符号+实物图+命名规则(太全了,绝对收藏)

    电子电路中常用的器件包括 电阻器 含电位器 电容器 电感器 变压器 二极管 三极管 光电器件 电声器件 显示器件 晶闸管 可控硅 场效应晶体管 IGBT MOSFET 继电器与干簧管 开关 保险丝 晶振 连接器 各种传感器等 下面一起来看看
  • LED 数码管共阴共阳的区别+静态/动态显示

    51单片机 数码管动态显示 1 共阴共阳定义 LED 共阴极指的是LED共同的接点是GND 接地 而共阳极指的是LED共同的接点是电源 LED亮灯的条件是两端有电势差 最后一段h dp小数点在高位 第一段a在低位 hgfedcba xxxx
  • 稳压二极管(齐纳Zener二极管)的接法和应用详解

    http www elecfans com dianzichangshi 20170529520260 html http www elecfans com yuanqijian erjiguang 20180103610356 html
  • 推挽电路 MOS管、推挽输出和开漏输出

    专题5 硬件设计 之 48 推挽电路驱动MOS管 嵌入式工程师成长之路的博客 CSDN博客 推挽驱动 专题2 电子工程师 之 硬件 之 44 MOS管的功能特点 专题2 电子工程师 之 硬件 之 45 AON6244 MOS管数据手册分析
  • 运算放大器的关键指标详解二(噪声)

    1 噪声指标 Noise 一个正常工作的放大电路 当输入端接地时 用示波器观察输出 你看到的可能不是平直的细线 而是在一定幅度之内的杂乱无章的波形 这就是噪声 你在示波器上看到线越粗 就说明噪声幅度越大 放大电路的输出端噪声 小至 V 以下
  • MCP3421的基础知识点

    目录 1 MCP3421封装形式与结构 2 MCP3421的工作原理 3 MCP3421的应用 Microchip公司的MCP3421与其他A D转换器相比 特点主要表现在 全差分输入 18位分辨率 精密的连续自校准功能 可选择3 75 1
  • 微弱直流电压/电流信号的采样电路 --滤波跟随放大

    要求将待测的电压 1mV 1000mV 电流 1mA 100mA 采样出来传给单片机 我的思路是 电压采样先用放大电路放大 再进行滤波 把50Hz的交流电干扰滤除 然后再进行模数转换传给单片机 电流的话用一个采样电阻 然后对其电压采样后推算
  • 芯片制造系列全流程:设计、制造、封测

    目录 芯片制造系列全流程 简 一 芯片制造全流程简介 二 芯片设计 三 芯片制造 四 封装测试 芯片目前分为三个主要环节 分别是设计 制程 封测 设计水平 制造这一块 最后说说封测这一块 芯片设计 芯片制造 封装测试完整解读 01 芯 片

随机推荐

  • Altium Designer 16来自原理图/PCB的各种报错 (持续更新):

    NO1 Net xxx has only one pin 根本原因 在BGA的原理图绘制时 我一般拉出该元件的所有IO的网络 这方便利于我开发其他款板卡 同样也会因为不同板卡的需求不同而造成有些IO并没有使用到 也就是整个原理图中only
  • 软件测试的学习方法

    学习软件测试需要掌握以下几个步骤 1 了解软件测试基础知识 软件测试是指在软件开发过程中 对软件进行验证和确认 以确定其是否符合规定的需求 标准和规范 因此 学习软件测试需要先理解软件测试的定义 分类 流程等基本概念 2 学习软件测试工具
  • 读写锁的实现

    读写锁的实现 待编辑
  • STEM教育课程的发展

    STEM教育本身的定义就是跨学科的整合式教育 科创教育近几年一直是教育领域的重头戏 由机器人和3D打印引发的创新科技教育热潮一直引领着创新教育行业 细分归属STEM教育的范畴 格物斯坦小坦克来说说stem教育课程的发展 STEM教育是全球许
  • 深入解析中间件之-Canal

    canal 阿里巴巴mysql数据库binlog的增量订阅 消费组件 MySQL binlog MySQL主从复制 mysql服务端修改配置并重启 1 2 3 4 5 6 7 8 9 10 11 12 vi etc my cnf mysql
  • Bonita实现的BPM应用系统

    多个领域的组织已经从Bonita的BPM解决方案中受益 用于改进它们的业务流程 世界各地的很多机构在它们的系统中已经成功布署了Bonita 1 Government of the Canary Islands 电子政务系统的BPM Boni
  • Optional int parameter 'folderId' is not present but cannot be translated into a null value due to b

    错误信息 严重 Servlet service for servlet controller in context with path gxbms threw exception Request processing failed nest
  • ungui中mainform以及login窗体的背景设置

    1 打开mainmodule窗体 2 设置mainmodule的background属性 3 设置mainmodule窗体的loginbackground属性 结果
  • 25个恶意JavaScript 库通过NPM官方包仓库分发

    聚焦源代码安全 网罗国内外最新资讯 编译 代码卫士 专栏 供应链安全 数字化时代 软件无处不在 软件如同社会中的 虚拟人 已经成为支撑社会正常运转的最基本元素之一 软件的安全性问题也正在成为当今社会的根本性 基础性问题 随着软件产业的快速发
  • Windows中通过命令行新建文件夹、新建文件

    进大厂 身价翻倍的法宝来了 主讲内容 docker kubernetes 云原生技术 大数据架构 分布式微服务 自动化测试 运维 腾讯课堂 点击进入 网易课堂 点击进入 7月1号 7月29号 8折优惠 7月1号 7月29号 8折优惠 7月1
  • 补码的作用

    补码的作用 避免零在二进制中的歧义 另一个好处就是方便运算 所有运算都能用加法运算器来实现 不再需要减法运算器 其实在计算机中 所有的减法操作都被转化为加法操作 如果想要深入研究 可以看看计算机组成原理 举个简单的例子 正数的补码和反码 原
  • 《Learning CUDA Programming》读书笔记(三)

    CUDA occupancy 一般等于 Active Thread Blocks per Multiprocessor Max Threads per Multiprocessor 分子是用户kernel和GPU硬件条件共同决定的 分母完全
  • Java SPI机制

    一 SPI机制简介 SPI的全名为Service Provider Interface java spi机制的思想 系统里抽象的各个模块 往往有很多不同的实现方案 在面向的对象的设计里 一般推荐模块之间基于接口编程 模块之间不对实现类进行硬
  • 完全分布式Hadoop集群搭建

    环境说明 操作系统 CentOS 8 x86 64 Hadoop版本 2 10 1 节点数 3 服务器规划 node1 node2 node3 199 188 166 111 199 188 166 112 199 188 166 113
  • 去趋势理解(detrend)

    https blog csdn net wokaowokaowokao12345 article details 60138308
  • 开漏输出、推挽输出、上拉电阻的原理及用途

    一 开漏输出 open drain 开漏电路概念中提到的 漏 就是指MOS FET的漏极 开漏主要是为了获得更大的驱动而来的 一般外面需要加上拉电阻 或下拉电阻 开楼电路的内部所有上拉全部断开 若要使用 必须在外部加上拉电阻 这样的话 其驱
  • JavaScript笔记:函数作用域和块作用域

    1 函数中的作用域 考虑如下的代码 function foo a var b 2 一些代码 function bar 更多的代码 var c 3 在这个代码片段中 foo 的作用域中包含了标识符 a b c 和 bar bar 拥有自己的作
  • 软件测试判断题总结

    判断题 1 验收测试是由最终用户来实施的 解析 当软件以项目的形式出现 那么验收测试由最终用户来实施的情况是比较长见的 但是对于产品形式的软件 生产企业内部的验收测试会更多 2 软件测试的目的是尽可能多的找出软件的缺陷 3 Beta测试是验
  • java的前期绑定和后期绑定

    原文地址 http blog sina com cn s blog 600046120100wdza html 程序绑定的概念 绑定指的是一个方法的调用与方法所在的类 方法主体 关联起来 对java来说 绑定分为静态绑定和动态绑定 或者叫做
  • 运算放大器(运放)选型、参数分析以及应用OPA2350

    1 运放选型速记指南 知乎 本文章旨在总结备份 方便以后查询 由于是个人总结 如有不对 欢迎指正 另外 内容大部分来自网络 书籍 和各类手册 如若侵权请告知 马上删帖致歉 运放 作为硬件电路上不可缺失的一部分 生活中也经常出现 因此在这里记