时间序列分析和预测(含实例及代码)

2023-11-15

导论

研究时间序列主要目的:进行预测,根据已有的时间序列数据预测未来的变化。

时间序列预测关键:确定已有的时间序列的变化模式,并假定这种模式会延续到未来。

时间序列预测法的基本特点
  • 假设事物发展趋势会延伸到未来
  • 预测所依据的数据具有不规则性
  • 不考虑事物发展之间的因果关系

时间序列数据用于描述现象随时间发展变化的特征

时间序列分析就其发展历史阶段和所使用的统计分析方法看:传统的时间序列分析和现代时间序列分析

一、时间序列及其分解

时间序列(time series)是同一现象在不同时间上的相继观察值排列而成的序列。根据观察时间的不同,时间序列中的时间可以是可以是年份、季度、月份或其他任何时间形式。

时间序列:

(1)平稳序列(stationary series)

是基本上不存在趋势的序列,序列中的各观察值基本上在某个固定的水平上波动,在不同时间段波动程度不同,但不存在某种规律,随机波动

(2)非平稳序列(non-stationary series)

是包含趋势、季节性或周期性的序列,只含有其中一种成分,也可能是几种成分的组合。可分为:有趋势序列、有趋势和季节性序列、几种成分混合而成的复合型序列。

趋势(trend):时间序列在长时期内呈现出来的某种持续上升或持续下降的变动,也称长期趋势。时间序列中的趋势可以是线性和非线性。

季节性(seasonality):季节变动(seasonal fluctuation),是时间序列在一年内重复出现的周期波动。销售旺季,销售淡季,旅游旺季、旅游淡季,因季节不同而发生变化。季节,不仅指一年中的四季,其实是指任何一种周期性的变化。含有季节成分的序列可能含有趋势,也可能不含有趋势。

周期性(cyclicity):循环波动(cyclical fluctuation),是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式波动。周期性是由商业和经济活动引起的,不同于趋势变动,不是朝着单一方向的持续运动,而是涨落相间的交替波动;不同于季节变动,季节变动有比较固定的规律,且变动周期大多为一年,循环波动则无固定规律,变动周期多在一年以上,且周期长短不一。周期性通常是由经济环境的变化引起。

除此之外,还有偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。时间序列除去趋势、周期性和季节性后的偶然性波动,称为随机性(random),也称不规则波动(irregular variations)。

时间序列的成分可分为4种:趋势(T)、季节性或季节变动(S)、周期性或循环波动(C)、随机性或不规则波动(I)。传统时间序列分析的一项主要内容就是把这些成分从时间序列中分离出来,并将它们之间的关系用一定的数学关系式予以表达,而后分别进行分析。按4种成分对时间序列的影响方式不同,时间序列可分解为多种模型:加法模型(additive model),乘法模型(multiplicative model)。乘法模型:Y_t=T_t\times S_t\times C_t\times I_t

二、描述性分析

1、图形描述

2、增长率分析

是对现象在不同时间的变化状况所做的描述。由于对比的基期不同,增长率有不同的计算方法。

(1)增长率(growth rate):增长速度,是时间序列中报告期观察值与基期观察值之比减1后的结果,用%表示。由于对比的基期不同,可分为环比增长率和定基增长率。

环比增长率:是报告期观察值与前一时期观察值之比减1,说明现象逐期增长变化的程度;

定基增长率是报告期观察值与某一固定时期观察值之比减1,说明现象在整个观察期内总的增长变化程度。

设增长率为G:          环比增长率 :G_i=\frac{Y_i-Y_{i-1}}{Y_{i-1}}=\frac{Y_i}{Y_{i-1}}-1,i=1,2...,n

                                       定基增长率 :G_i=\frac{Y_i-Y_{0}}{Y_{0}}=\frac{Y_i}{Y_{0}}-1,i=1,2...,n

(2)平均增长率(average rate of increase):平均增长速度,是时间序列中逐期环比值(环比发展速度)的几何平均数减1的结果:\bar{G}=\sqrt[n]{\frac{Y_1}{Y_{0}}\times \frac{Y_2}{Y_{1}}...\times \frac{Y_n-Y_{n-1}}{Y_{i-1}}}-1=\sqrt[n]{\frac{Y_n-Y_{n-1}}{Y_{0}}}-1   n:环比值的个数

(3)增长率分析中应注意的问题

i:    当时间序列中的观察出现0或负数时,不宜计算增长率。这种序列计算增长率,要么不符合数学公理,要么无法解释其实际意义。可用绝对数进行分析。

ii:    有些情况下,不能单纯就增长率论增长率,注意增长率与绝对水平结合起来。增长率是一个相对值,与对比的基数值的大小有关。这种情况,计算增长1%的绝对值来克服增长率分析的局限性:

增长1%的绝对值表示增长率每增长一个百分点而增加的绝对数量:增长1%的绝对值=前期水平/100

三、时间序列预测的程序

时间序列分析的主要目的之一是根据已有的历史数据对未来进行预测。时间序列含有不同的成分,如趋势、季节性、周期性和随机性。对于一个具体的时间序列,它可能含有一种成分,也可能同时含有几种成分,含有不同成分的时间序列所用的预测方法是不同的。预测步骤:

第一步:确定时间序列所包含的成分,确定时间序列的类型

第二步:找出适合此类时间序列的预测方法

第三步:对可能的预测方法进行评估,以确定最佳预测方案

第四步:利用最佳预测方案进行预测

1、确定时间序列成分

(1)确定趋势成分

确定趋势成分是否存在,可绘制时间序列的线图,看时间序列是否存在趋势,以及存在趋势是线性还是非线性。

利用回归分析拟合一条趋势线,对回归系数进行显著性检验。回归系数显著,可得出线性趋势显著的结论。

(2)确定季节成分

确定季节成分是否存在,至少需要两年数据,且数据需要按季度、月份、周或天来记录。可绘图,年度折叠时间序列图(folded annual time series plot),需要将每年的数据分开画在图上,横轴只有一年的长度,每年的数据分别对应纵轴。如果时间序列只存在季节成分,年度折叠时间序列图中的折线将会有交叉;如果时间序列既含有季节成分又含有趋势,则年度折叠时间序列图中的折线将不会有交叉,若趋势上升,后面年度的折线将会高于前面年度的折线,若下降,则后面年度的折线将会低于前面年度的折线。

2、选择预测方法

确定时间序列类型后,选择适当的预测方法。利用时间数据进行预测,通常假定过去的变化趋势会延续到未来,这样就可以根据过去已有的形态或模式进行预测。时间序列的预测方法:传统方法:简单平均法、移动平均法、指数平滑法等,现代方法:Box-Jenkins 的自回归模型(ARMA)。

一般来说,任何时间序列都会有不规则成分存在,在商务和管理数据中通常不考虑周期性,只考虑趋势成分和季节成分。

不含趋势和季节成分的时间序列,即平稳时间序列只含随机成分,只要通过平滑可消除随机波动。因此,这类预测方法也称平滑预测方法。

3、预测方法的评估

在选择某种特定的方法进行预测时,需要评价该方法的预测效果或准确性。评价方法是找出预测值与实际值的差距,即预测误差。最优的预测方法就是预测误差达到最小的方法。

预测误差计算方法:平均误差,平均绝对误差、均方误差、平均百分比误差、平均绝对百分比误差。方法的选择取决于预测者的目标、对方法的熟悉程度。

(1)平均误差(mean error):Y:观测值,F:预测值,n预测值个数

               ME=\frac{\sum_{i=1}^{n}(Y_i-F_i)}{n}     

由于预测误差的数值可能有正有负,求和的结果就会相互抵消,这种情况下,平均误差可能会低估误差。

(2)平均绝对误差(mean absolute deviation)是将预测误差取绝对值后计算的平均无擦,MAD:

              MAD=\frac{\sum_{i=1}^{n}|Y_i-F_i|}{n}

平均绝对误差可避免误差相互抵消的问题,因而可以准确反映实际预测误差的大小。

(3)均方误差(mean square error):通过平方消去误差的正负号后计算的平均误差,MSE:

            MSE=\frac{\sum_{i=1}^{n}(Y_i-F_i)^2}{n}

(4)平均百分比误差和平均绝对百分比误差

ME,MAD,MSE的大小受时间序列数据的水平和计量单位的影响,有时并不能真正反映预测模型的好坏,只有在比较不同模型对同一数据的预测时才有意义。平均百分比误差(mean percentage error,MPE)和平均绝对百分比误差(mean absolute percentage error,MAPE)则不同,它们消除了时间序列数据的水平和计量单位的影响,是反映误差大小的相对值。

MPE=\frac{\sum_{i=1}^{n}(\frac{Y_i-F_i}{Y_i}\times 100)}{n} 

MAPE=\frac{\sum_{i=1}^{n}(\frac{|Y_i-F_i|}{Y_i}\times 100)}{n}

4、平稳序列的预测

平稳时间序列只含有随机成分,预测方法:简单平均法、移动平均法、指数平滑法。主要通过对时间序列进行平滑以消除随机波动,又称平滑法。平滑法可用于对时间序列进行短期预测,也可对时间序列进行平滑以描述序列的趋势(线性趋势和非线性趋势)。

(1)简单平均法:根据已有的t期观察值通过简单平均法来预测下一期的数值。设时间序列已有的t期观察值为Y_1,Y_2,...,Y_t,则t+1期的预测值F_{t+1}为:F_{t+1}=\frac{1}{t}(Y_1+Y_2+...+Y_t)=\frac{1}{t}\sum_{i=1}^{t} Y_i

到了t+1期后,有了t+1期的实际值,t+1期的预测误差e_{t+1}为:e_{t+1}=Y_{t+1}-F_{t+1}

t+2期预测值:F_{t+2}=\frac{1}{t+1}(Y_1+Y_2+...+Y_t+Y_{t+1})=\frac{1}{t+1}\sum_{i=1}^{t+1} Y_i

简单平均法适合对较为平稳的时间序列进行预测,即当时间序列没有趋势时,用该方法比较好。但如果时间序列有趋势或季节成分,该方法的预测则不够准确。简单平均法将远期的数值和近期的数值看作对未来同等重要。从预测角度,近期的数值比远期的数值对未来有更大的作用,因此简单平均法预测的结果不够准确。

(2)移动平均法(moving average):通过对时间序列逐期递移求得平均数作为预测值的一种预测方法,有简单移动平均法(simple moving average)和加权移动平均法(weighted moving average).

简单移动平均将最近k期数据加以平均,作为下一期的预测值。设移动平均间隔为k(1<k<t),则t期的移动平均值为:

\bar{Y}_{t}=\frac{Y_{t-k+1}+Y_{t-k+2}+...+Y_{t-1}+Y_{t}}{k}  是对时间序列的平滑结果,通过这些平滑值可描述出时间序列的变化形态或趋势。也可以用来预测。

t+1期的简单移动平均预测值为:F_{t+1}=\bar{Y}_{t}=\frac{Y_{t-k+1}+Y_{t-k+2}+...+Y_{t-1}+Y_{t}}{k}

t+2期的简单移动平均预测值为:F_{t+2}=\bar{Y}_{t+1}=\frac{Y_{t-k+2}+Y_{t-k+3}+...+Y_{t}+Y_{t+1}}{k}

移动平均法只使用最近k期的数据,在每次计算移动平均值时,移动的间隔都为k,也适合对较为平稳的时间序列进行预测。应用关键是确定合理的移动平均间隔k。对于同一个时间序列,采用不同的移动间隔,预测的准确性是不同的。可通过试验的方法,选择一个使均方误差达到最小的移动间隔。移动间隔小,能快速反映变化,但不能反映变化趋势;移动间隔大,能反映变化趋势,但预测值带有明显的滞后偏差。

移动平均法的基本思想:移动平均可以消除或减少时间序列数据受偶然性因素干扰而产生的随机变动影响,适合短期预测。

(3)指数平滑法(exponential smoothing)是通过对过去的观察值加权平均进行预测,使t+1期的预测值等t期的实际观察值与t期的预测值的加权的平均值。指数平滑法是从移动平均法发展而来,是一种改良的加权平均法,在不舍弃历史数据的前提下,对离预测期较近的历史数据给予较大权数,权数由近到远按指数规律递减,因此称指数平滑。指数平滑有一次指数平滑法、二次指数平滑法、三次指数平滑法等。

一次指数平滑法也称单一指数平滑法(single exponential smoothing),只有一个平滑系数,且观察值离预测时期越久远,权数变得越小。一次指数平滑是将一段时期的预测值与观察值的线性组合作为t+1时期的预测值,预测模型为:

F_{t+1}=\alpha Y_t+(1-\alpha )F_t      \alpha:平滑系数(0\leq \alpha\leq 1

t+1期的数据是t期的实际观察值与t期的预测值的加权平均。1期的预测值=1期的观察值

2期预测值:F_{2}=\alpha Y_1+(1-\alpha )F_1=\alpha Y_1+(1-\alpha )Y_1=Y_1

3期预测值:F_{3}=\alpha Y_2+(1-\alpha )F_2=\alpha Y_2+(1-\alpha )Y_1

4期预测值:F_{4}=\alpha Y_3+(1-\alpha )F_3=\alpha Y_3+\alpha (1-\alpha )Y_2+ (1-\alpha )^2Y_1

对指数平滑法的预测精度,用均方误差来=衡量:

F_{t+1}=\alpha Y_t+(1-\alpha )F_t

          =F_t+\alpha (Y_t-F_t)

F_{t+1}是t期的预测值F_{t}加上用\alpha调整的t期预测误差(Y_t-F_t)。

使用指数平滑法时, 关键问题是确定一个合适的平滑系数\alpha,不同的\alpha对预测结果产生不同的影响。

\alpha=0,预测值仅仅是重复上一期的预测结果;\alpha=1,预测值就是上一期的实际值;

\alpha越接近1,模型对时间序列变化的反应就越及时,因为它给当前的实际值赋予了比预测值更大的权数;

\alpha越接近0,给当前的预测值赋予了更大的权数,模型对时间序列变化的反应就越慢。

当时间序列有较大随机波动时,选较大\alpha,以便能很快跟上近期的变化;当时间序列比较平稳时,选较小\alpha

实际应用中,需考虑预测误差,用均方误差衡量预测误差大小。确定\alpha时,可选择几个\alpha进行预测,然后找出预测误差最小的作为最后的\alpha值。

与移动平均法一样,一次指数平滑法可用于对时间序列进行修匀,以消除随机波动,找出序列的变化趋势。

用一次指数平滑法进行预测时,一般\alpha取值不大于0.5,若大于0.5,才能接近实际值,说明序列有某种趋势或波动过大。

阻尼系数  \beta=1-\alpha ,阻尼系数越小,近期实际值对预测结果的影响越大,反之,越小。阻尼系数是根据时间序列的变化特性来选取。

5、趋势型序列的预测

时间序列的趋势可分为线性趋势和非线性趋势,若这种趋势能够延续到未来,就可利用趋势进行外推预测。有趋势序列的预测方法主要有线性趋势预测、非线性趋势预测和自回归模型预测。

(1) 线性趋势预测

线性趋势(linear trend)是指现象随着时间的推移而呈现稳定增长或下降的线性变化规律。

趋势方程:\hat{Y}_t=b_0+b_1t     \hat{Y}_t:时间序列Y_t的预测值;b_1是趋势线斜率,表示时间t 变动一个单位,观察值的平均变动数量

(2) 非线性趋势预测

序列中的趋势通常可认为是由于某种固定因素作用同一方向所形成的。若这种因素随时间推移按线性变化,则可对时间序列拟合趋势直线;若呈现出某种非线性趋势(non-linear trend),则需要拟合适当的趋势曲线。

i:   指数曲线(exponential curve):用于描述以几何级数递增或递减的现象,即时间序列的观察值Y_t按指数规律变化,或者时间序列的逐期观察值按一定的增长率增长或衰减。一般的自然增长及大多数经济序列都有指数变化趋势。

趋势方程:\hat{Y}_t=b_0b_1^{t}     b_0,b_1为待定系数

b_1>1,则增长率随着时间t的增加而增加;若b_1<1,则增长率随着时间t的增加而降低;若b_0>0,b_1<1,则预测值\hat{Y}_t逐渐降低以到0为极限。

为确定b_0,b_1,可采用线性化手段将其化为对数直线形式,两端取对数:lg\hat{Y}_t=lgb_0+tlgb_1

根据最小二乘原理,按直线形式的常数确定方法求得 lgb_0,lgb_1,求出 lgb_0,lgb_1后,再取其反对数,即可得到b_0,b_1

\left\{\begin{matrix}\sum lgY=nlgb_0+lgb_1\sum t\\\sum t lgY_t=lgb_0\sum t+lgb_1\sum t^2\end{matrix}\right.

ii:   多阶曲线:

有些现象变化形态复杂,不是按照某种固定的形态变化,而是有升有降,在变化过程中可能有几个拐点。这时就需要拟合多项式函数。当只有一个拐点时,可拟合二项曲线,即抛物线;当有两个拐点时,需要拟合三阶曲线;有k-1个拐点时,需要拟合k阶曲线。

6、复合型序列的分解预测

复合型序列是指含有趋势、季节、周期和随机成分的序列。对这类序列的预测方法是将时间序列的各个因素依次分解出来,然后进行预测。由于周期成分的分析需要有多年的数据,实际中很难得到多年的数据,因此采用的分解模型为:Y_t=T_t\times S_t\times I_t

预测方法有:季节性多元回归模型、季节自回归模型和时间序列分解法预测。

分解法预测步骤:

第一步:确定并分离季节成分。计算季节指数,以确定时间序列中的季节成分。然后将季节成分从时间序列中分离出去,即用每一个时间序列观察值除以相应的季节指数,以消除季节性。

第二步:建立预测模型并进行预测。对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测。

第三步:计算最后的预测值。用预测值乘以相应的季节指数,得到最终的预测值。

(1)确定并分离季节成分

季节性因素分析是通过季节指数来表示各年的季节成分,以此描述各年的季节变动模式。

i:  计算季节指数(seasonal index)

季节指数刻画了序列在一个年度内各月或各季度的典型季节特征。在乘法模型中,季节指数以其平均数等于100%为条件而构成的,反映了某一月份或季度的数值占全年平均值的大小。若现象的发展没有季节变动,则各期的季节指数应等于100%;若某一月份或季度有明显的季节变化,则各期的季节指数应大于或小于100%。因此,季节变动的程度是根据各季节指数与其平均数(100%)的偏差程度来测定的。

季节指数计算方法较多,移动平均趋势剔除法步骤:

第一步:计算移动平均值(若是季节数据,采用4项移动平均,月份数据则采用12项移动平均),并对其结果进行中心化处理,即将移动平均的结果再进行一次二项移动平均,即得出中心化移动平均值(CMA)。

第二步:计算移动平均的比值,即季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后计算出各比值的季度或月份平均值。

第三步:季节指数调整。由于各季节指数的平均数应应等于1或100%,若根据第二步计算的季节比率的平均值不等于1,则需要进行调整。具体方法:将第二步计算的每个季节比率的平均值除以它们的总平均值。

ii:  分离季节成分

计算出季节指数后,可将各实际观察值分别除以相应的季节指数,将季节成分从时间序列中分离出去:\frac{Y}{S}=\frac{T*S*I}{S}=T*I

结果即为季节成分分离后的序列,反映了在没有季节因素影响下时间序列的变化形态。

iii: 建立预测模型并进行预测

7、时序案例分析

https://blog.csdn.net/mengjizhiyou/article/details/104765862

 

参考:贾俊平《统计学》第六版

《统计学》pdf及课后答案:链接: https://pan.baidu.com/s/1dZPW0smz2cO-67zfn1BFyQ 提取码: ktxq 

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

时间序列分析和预测(含实例及代码) 的相关文章

  • jupyter 魔法命令

    Jupyter NoteBook 是功能强大的Python交互IDE 深受数据分析师和算法工程师的热爱 Jupyter NoteBook 在综合使用文字 代码 图片等多种元素展示设计者的想法方面有着美妙的用户体验 而其自带的一些常用Magi
  • pytorch 详解NLLloss 与crossEntry

    NLLloss 与CrossEntry
  • Python多线程的理解和使用(一)Threading中join()函数的理解

    转载自 https blog csdn net zhuzuwei article details 80927554 多线程的概念 多线程类似于同时执行多个不同程序 多线程运行有如下优点 使用线程可以把占据长时间的程序中的任务放到后台去处理
  • 机器学习降维算法三:LLE (Locally Linear Embedding) 局部线性嵌入

    机器学习降维算法三 LLE Locally Linear Embedding 局部线性嵌入 https www cnblogs com xbinworld archive 2012 07 09 LLE html https segmentf
  • 标准化与标准计分

    其实就是衡量 含金量 的一种方法 标准计分其实就是 距离 标准差 貌似和离差很像 离差就是 距离 标准差 10 50 对于分数来说 如果与平均分的距离越大 含金量就越高呢 在组数据中 可以求分均值 中位数以及标准差了 以考试成绩为例 现在
  • python实现beta分布概率密度函数

    beta分布的最大特点是其多样性 从下图可以看出 beta分布具有各种形态 有U形 类似正态分布的形状 类似uniform分布的形状等 正式这一特质使beta分布在共轭先验的计算中起到重要作用 import matplotlib pyplo
  • 方差、协方差、期望、相关系数等概念集合

    首先说明一下 本文是本人在复习方差等相关知识的过程中 通过网络上的相关讲解 进行个人总结后得到的 并非个人原创 在此发布只是为了作为一个学习记录与大家分享 1 期望 试验中可能出现的值及其概率的乘积 即是数学期望 1 离散型 离散型随机变量
  • 巧用excel公式提取网址中的域名---超级好用

    巧用excel公式提取网址中的域名 超级好用 经常会整理很多网址 需要按照他们的域名归类 下面是公式 在a1列是我们要整理的网址 b列我们输入公式 MID A1 SEARCH A1 SEARCH A1 1 1 SEARCH A1 SEARC
  • 比赛细节笔记总结

    2020 10 06 res 的思想 与 ensemble 的 思想 加入很多层 ensemble 一下 也算是集成模型 res 的思想 一般是加比较好 序列问题可以加入 pos embedding an照 transformer 的方法加
  • py 语法操作小计

    list只能加 a b set 只能减 a b parser 传参数 test py import argparse parser argparse ArgumentParser description Training GNN on Pa
  • 链式法则

    2个事件同时发生的概率 P a b P a b P b 其中 P a b 表示 a和b事件同时发生的概率 P a b 是一个条件概率 表示在b事件发生的条件下 a发生的概率 3个事件的概率链式调用 P a b c P a b c P b c
  • 机器学习--PCA(主成分分析)原理及应用

    众所周知PCA是有效的降维方法 当你的特征非常多维度非常大的时候 为了使机器学习的算法在计算或是训练的时候有更高的效率 通常会进行降维处理 将一个具有m个数据n维的数据降为k维的数据 方法如下 算出一个sigma矩阵 x i 为n 1的矩阵
  • dgl 操作

    dgl图的基本操作 dgl简单使用 udf函数怎么写 通过edges 打得到两端的列表 将所有nodes换成edges 截错图了 通过nodes则不是很好使 返回很多的tensor原因是这个函数运行好几遍
  • 假设检验笔记

    假设检验 就是做了一个假设 H 然后通过实验得到相关的统计数据判断 H 是否 大概率 成立 或者有多大把握认为 H 成立 这个 H 一般是一个与分布 统计量相关的的命题 如 H P 硬 币 朝
  • Expected object of backend CPU but got backend CUDA for argument #2 'weight' 报错的问题和解决办法

    很实用的工具 https blog csdn net zz2230633069 article details 93266950
  • 使用statsvn统计svn中的代码量

    StatSVN介绍 StatSVN是一个Java写的开源代码统计程序 从statCVS移植而来 能够从Subversion版本库中取得信息 然后生成描述项目开发的各种表格和图表 比如 代码行数的时间线 针对每个开发者的代码行数 开发者的活跃
  • 时间序列分析和预测(含实例及代码)

    导论 研究时间序列主要目的 进行预测 根据已有的时间序列数据预测未来的变化 时间序列预测关键 确定已有的时间序列的变化模式 并假定这种模式会延续到未来 时间序列预测法的基本特点 假设事物发展趋势会延伸到未来 预测所依据的数据具有不规则性 不
  • 不要再用简单的加权平均了 用回归做融合吧

  • 相关性和因果性

    一 如果A和B相关 有至少五种可能性 1 A导致B 2 B导致A 3 C导致A和B 4 A和B互为因果 5 小样本引起的巧合 二 相关是线性关性 非线性的因果关系对应的相关性可能会减弱或消失 统计上A和B具有线性 或者非线性 关系 通常代表
  • sklearn总篇

    one hot 化

随机推荐