机器学习算法:特征工程-特征提取

2023-11-18

学习目标

  • 了解什么是特征提取
  • 知道字典特征提取操作流程
  • 知道文本特征提取操作流程
  • 知道tfidf的实现思想

什么是特征提取呢?

 

1 特征提取

1.1 定义

将任意数据(如文本或图像)转换为可用于机器学习的数字特征

注:特征值化是为了计算机更好的去理解数据

  • 特征提取分类:
    • 字典特征提取(特征离散化)
    • 文本特征提取
    • 图像特征提取(深度学习将介绍)

1.2 特征提取API

sklearn.feature_extraction

2 字典特征提取

作用:对字典数据进行特征值化

  • sklearn.feature_extraction.DictVectorizer(sparse=True,…)
    • DictVectorizer.fit_transform(X)
      • X:字典或者包含字典的迭代器返回值
      • 返回sparse矩阵
    • DictVectorizer.get_feature_names() 返回类别名称

2.1 应用

我们对以下数据进行特征提取

[{'city': '北京','temperature':100},
{'city': '上海','temperature':60},
{'city': '深圳','temperature':30}]

 

 

2.2 流程分析

  • 实例化类DictVectorizer
  • 调用fit_transform方法输入数据并转换(注意返回格式)
from sklearn.feature_extraction import DictVectorizer

def dict_demo():
    """
    对字典类型的数据进行特征抽取
    :return: None
    """
    data = [{'city': '北京','temperature':100}, {'city': '上海','temperature':60}, {'city': '深圳','temperature':30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=False)
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print("返回的结果:\n", data)
    # 打印特征名字
    print("特征名字:\n", transfer.get_feature_names())

    return None

注意观察没有加上sparse=False参数的结果

返回的结果:
   (0, 1)    1.0
  (0, 3)    100.0
  (1, 0)    1.0
  (1, 3)    60.0
  (2, 2)    1.0
  (2, 3)    30.0
特征名字:
 ['city=上海', 'city=北京', 'city=深圳', 'temperature']

这个结果并不是我们想要看到的,所以加上参数,得到想要的结果:

返回的结果:
 [[   0.    1.    0.  100.]
 [   1.    0.    0.   60.]
 [   0.    0.    1.   30.]]
特征名字:
 ['city=上海', 'city=北京', 'city=深圳', 'temperature']

之前在学习pandas中的离散化的时候,也实现了类似的效果。

我们把这个处理数据的技巧叫做”one-hot“编码:

 转化为:

 

2.3 总结

对于特征当中存在类别信息的我们都会做one-hot编码处理

3 文本特征提取

作用:对文本数据进行特征值化

  • sklearn.feature_extraction.text.CountVectorizer(stop_words=[])

    • 返回词频矩阵
    • CountVectorizer.fit_transform(X)
      • X:文本或者包含文本字符串的可迭代对象
      • 返回值:返回sparse矩阵
    • CountVectorizer.get_feature_names() 返回值:单词列表
  • sklearn.feature_extraction.text.TfidfVectorizer

3.1 应用

我们对以下数据进行特征提取

["life is short,i like python",
"life is too long,i dislike python"]

 

3.2 流程分析

  • 实例化类CountVectorizer
  • 调用fit_transform方法输入数据并转换 (注意返回格式,利用toarray()进行sparse矩阵转换array数组)
from sklearn.feature_extraction.text import CountVectorizer

def text_count_demo():
    """
    对文本进行特征抽取,countvetorizer
    :return: None
    """
    data = ["life is short,i like like python", "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False) # 注意,没有sparse这个参数
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data = transfer.fit_transform(data)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None

返回结果:

文本特征抽取的结果:
 [[0 1 1 2 0 1 1 0]
 [1 1 1 0 1 1 0 1]]
返回特征名字:
 ['dislike', 'is', 'life', 'like', 'long', 'python', 'short', 'too']

问题:如果我们将数据替换成中文?

"人生苦短,我喜欢Python","生活太长久,我不喜欢Python"

那么最终得到的结果是

 

为什么会得到这样的结果呢,仔细分析之后会发现英文默认是以空格分开的。其实就达到了一个分词的效果,所以我们要对中文进行分词处理

3.3 jieba分词处理

  • jieba.cut()
    • 返回词语组成的生成器

需要安装下jieba库

pip3 install jieba

3.4 案例分析

对以下三句话进行特征值化

今天很残酷,明天更残酷,后天很美好,
但绝对大部分是死在明天晚上,所以每个人不要放弃今天。

我们看到的从很远星系来的光是在几百万年之前发出的,
这样当我们看到宇宙时,我们是在看它的过去。

如果只用一种方式了解某样事物,你就不会真正了解它。
了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。
  • 分析
    • 准备句子,利用jieba.cut进行分词
    • 实例化CountVectorizer
    • 将分词结果变成字符串当作fit_transform的输入值

 

from sklearn.feature_extraction.text import CountVectorizer
import jieba

def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text

def text_chinese_count_demo2():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = CountVectorizer()
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None

返回结果:

Building prefix dict from the default dictionary ...
Dumping model to file cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 1.032 seconds.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
Prefix dict has been built succesfully.
文本特征抽取的结果:
 [[2 0 1 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 2 0 1 0 2 1 0 0 0 1 1 0 0 1 0]
 [0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 1]
 [1 1 0 0 4 3 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 2 1 0 0 1 0 0 0]]
返回特征名字:
 ['一种', '不会', '不要', '之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']

但如果把这样的词语特征用于分类,会出现什么问题?

请看问题:

 

该如何处理某个词或短语在多篇文章中出现的次数高这种情况

3.5 Tf-idf文本特征提取

  • TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。
  • TF-IDF作用:用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。

3.5.1 公式

  • 词频(term frequency,tf)指的是某一个给定的词语在该文件中出现的频率
  • 逆向文档频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到

 

最终得出结果可以理解为重要程度。

举例:
假如一篇文章的总词语数是100个,而词语"非常"出现了5次,那么"非常"一词在该文件中的词频就是5/100=0.05。
而计算文件频率(IDF)的方法是以文件集的文件总数,除以出现"非常"一词的文件数。
所以,如果"非常"一词在1,0000份文件出现过,而文件总数是10,000,000份的话,
其逆向文件频率就是lg(10,000,000 / 1,0000)=3。
最后"非常"对于这篇文档的tf-idf的分数为0.05 * 3=0.15

3.5.2 案例

from sklearn.feature_extraction.text import TfidfVectorizer
import jieba

def cut_word(text):
    """
    对中文进行分词
    "我爱北京天安门"————>"我 爱 北京 天安门"
    :param text:
    :return: text
    """
    # 用结巴对中文字符串进行分词
    text = " ".join(list(jieba.cut(text)))

    return text

def text_chinese_tfidf_demo():
    """
    对中文进行特征抽取
    :return: None
    """
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]
    # 将原始数据转换成分好词的形式
    text_list = []
    for sent in data:
        text_list.append(cut_word(sent))
    print(text_list)

    # 1、实例化一个转换器类
    # transfer = CountVectorizer(sparse=False)
    transfer = TfidfVectorizer(stop_words=['一种', '不会', '不要'])
    # 2、调用fit_transform
    data = transfer.fit_transform(text_list)
    print("文本特征抽取的结果:\n", data.toarray())
    print("返回特征名字:\n", transfer.get_feature_names())

    return None

返回结果:

Building prefix dict from the default dictionary ...
Loading model from cache /var/folders/mz/tzf2l3sx4rgg6qpglfb035_r0000gn/T/jieba.cache
Loading model cost 0.856 seconds.
Prefix dict has been built succesfully.
['一种 还是 一种 今天 很 残酷 , 明天 更 残酷 , 后天 很 美好 , 但 绝对 大部分 是 死 在 明天 晚上 , 所以 每个 人 不要 放弃 今天 。', '我们 看到 的 从 很 远 星系 来 的 光是在 几百万年 之前 发出 的 , 这样 当 我们 看到 宇宙 时 , 我们 是 在 看 它 的 过去 。', '如果 只用 一种 方式 了解 某样 事物 , 你 就 不会 真正 了解 它 。 了解 事物 真正 含义 的 秘密 取决于 如何 将 其 与 我们 所 了解 的 事物 相 联系 。']
文本特征抽取的结果:
 [[ 0.          0.          0.          0.43643578  0.          0.          0.
   0.          0.          0.21821789  0.          0.21821789  0.          0.
   0.          0.          0.21821789  0.21821789  0.          0.43643578
   0.          0.21821789  0.          0.43643578  0.21821789  0.          0.
   0.          0.21821789  0.21821789  0.          0.          0.21821789
   0.        ]
 [ 0.2410822   0.          0.          0.          0.2410822   0.2410822
   0.2410822   0.          0.          0.          0.          0.          0.
   0.          0.2410822   0.55004769  0.          0.          0.          0.
   0.2410822   0.          0.          0.          0.          0.48216441
   0.          0.          0.          0.          0.          0.2410822
   0.          0.2410822 ]
 [ 0.          0.644003    0.48300225  0.          0.          0.          0.
   0.16100075  0.16100075  0.          0.16100075  0.          0.16100075
   0.16100075  0.          0.12244522  0.          0.          0.16100075
   0.          0.          0.          0.16100075  0.          0.          0.
   0.3220015   0.16100075  0.          0.          0.16100075  0.          0.
   0.        ]]
返回特征名字:
 ['之前', '了解', '事物', '今天', '光是在', '几百万年', '发出', '取决于', '只用', '后天', '含义', '大部分', '如何', '如果', '宇宙', '我们', '所以', '放弃', '方式', '明天', '星系', '晚上', '某样', '残酷', '每个', '看到', '真正', '秘密', '绝对', '美好', '联系', '过去', '还是', '这样']

3.6 Tf-idf的重要性

分类机器学习算法进行文章分类中前期数据处理方式


4 小结

  • 特征提取【了解】
    • 将任意数据(如文本或图像)转换为可用于机器学习的数字特征
  • 特征提取分类:【了解】
    • 字典特征提取(特征离散化)
    • 文本特征提取
    • 图像特征提取
  • 字典特征提取【知道】
    • 字典特征提取就是对类别型数据进行转换
    • api:sklearn.feature_extraction.DictVectorizer(sparse=True,…)
      • aparse矩阵
        • 1.节省内容
        • 2.提高读取效率
      • 注意:
        • 对于特征当中存在类别信息的我们都会做one-hot编码处理
  • 文本特征提取(英文)【知道】
    • api:sklearn.feature_extraction.text.CountVectorizer(stop_words=[])
      • stop_words -- 停用词
      • 注意:没有sparse这个参数
      • 单个字母,标点符号不做统计
  • 文本特征提取(中文)【知道】
    • 注意:
      • 1.在中文文本特征提取之前,需要对句子(文章)进行分词(jieba)
      • 2.里面依旧可以使用停用词,进行词语的限制
  • tfidf【知道】
    • 主要思想:
      • 如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为此词或者短语具有很好的
      • 类别区分能力,适合用来分类
    • tfidf
      • tf -- 词频
      • idf -- 逆向文档频率
    • api:sklearn.feature_extraction.text.TfidfVectorizer
    • 注意:
      • 分类机器学习算法进行文章分类中前期数据处理方式
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

机器学习算法:特征工程-特征提取 的相关文章

随机推荐

  • 基于免疫优化算法的物流配送中心选址规划研究(Matlab实现)

    目录 1 概述 2 物流配送中心选址规划研究 3 Matlab代码 4 结果 1 概述 影响物流配送中心选址的因素有很多 精确选址优化问题亟待解决 通过充分考虑货物的配送时间 将免疫算法加入其中 介绍了物流配送选址模型的构建以及免疫算法实现
  • Spring AOP源码解析-拦截器链的执行过程

    一 简介 在前面的两篇文章中 分别介绍了 Spring AOP 是如何为目标 bean 筛选合适的通知器 以及如何创建代理对象的过程 现在得到了 bean 的代理对象 且通知也以合适的方式插在了目标方法的前后 接下来要做的事情 就是执行通知
  • 主流开源数据库的技术特点(转载)

    点评主流开源数据库的技术特点 2006 02 24 来自 计算机世界 曹江华 随着开放源代码软件的使用越来越广泛 像Linux操作系统一样 开放源代码数据库的出现也有其必然性 在当Oracle IBM Microsoft Sybase 等几
  • 振动数据采集上位机(包含实时智能算法分析)开发

    功能模块介绍 上位机界面如下 开始采集按钮 当点击该按钮后 上位机开始采集数据 并界面展示时域数据信号 在开始采集之前必须先输入串口号和波特率和采样率 FFT分析 当点击按钮后 界面展示FFT频谱 系统参数按钮 可继续扩展 当点击该按钮后
  • 2的31次方和3的21次方哪个大,123组成最大的数是多少?

    123这三个数字组成最大的数是什么数 面试官告诉小孙 123这三个数字组成最大的数是什么数 我希望你能够在5分钟之内回答出来 小孙当时连想都没有想 123组成的最大数字 当然就是123了 当小孙把这个答案告诉面试官的时候 面试官摇摇头 然后
  • Min Difference 二分优化

    题目链接 暴力的时间复杂度是O n 2 n 2 n2 只能在查询的时候优化一下 可以手写一个左闭右开的二分 也可以使用库函数 l
  • 英语语法笔记——并列句(二)

    找出长难句主干的三个步骤 看标点符号 看标点符号 看逗号 判断都在前面和逗号后面的部分 看看 介词 从句和非谓语动词在前面还是后面 如果在前面主干就在后面 如果在后面 主干就在前面 介词等 主干 主干 介词等 看分号 分号前后相当于一个并列
  • k8s 裸机安装 nginx1.19 ingrass

    k8s 裸机安装 nginx1 19 ingrass deploy yaml文件如下 apiVersion v1 kind Namespace metadata name ingress nginx labels app kubernete
  • javaAPI

    第一章 集合框架 集合框架 多个接口和类 不知道存在的对象的数量或者需要更复杂的方式来存储对象时 一一对应时也可以使用 可以使用集合框架 Java集合框架提供一套性能优良 使用方便得接口和类 它们为与java util包中 a Collec
  • 英语什么叫做自控力720词

    Two common terms from the psychological literature are self regulation and self control Self regulation is your ability
  • idea导入项目,Lombok插件安装了,且配置文件中配置了,还是不能正常启动,表示找不到get、set方法

    1 保证安装了Lombok插件 2 保证maven或者gradle中添加了依赖 3 如下配置
  • E45: ‘readonly‘ option is set (add ! to override)

    vim 修改文件出现错误 E45 readonly option is set add to override 其实这是权限造成的 文件设置成了只读权 只读文件修改前需要执行sudo 但是已经修改了 如何强制保存呢 只需要保存的时候执行如下
  • 【Python】读取txt文件,获取指定行中指定位置数据

    问题描述 需求 读取大约有200多行的txt文件 获取17 216行中每行中指定位置中的数值 实现 coding utf 8 Date 2020 5 21 21 53 Author Pangpd FileName read log py I
  • pytorch: tensor类型的构建与相互转换

    Summary 主要包括以下三种途径 使用独立的函数 使用torch type 函数 使用type as tesnor 将张量转换为给定类型的张量 使用独立函数 import torch tensor torch randn 3 5 pri
  • mpvue中配置vuex并持久化到本地Storage

    demo代码 github com jianjian we 配置vuex和在vue中相同 只是mpvue有一个坑 就是不能直接在new Vue的时候传入store 步骤 1 在src目录下新建一个store目录 结构如下 官方推荐 vuex
  • 微信公众号网页开发jweixin.js的使用

    首先申请测试账号 获取以下信息 使用你的appId和appsecret获取token https api weixin qq com cgi bin token grant type client credential appid wxa4
  • ESP32-cam 初体验 从esp32-cam的购买到局域网监控的实现

    ESP32 cam小项目 helloworld项目 前言 手头有一块esp32 cam闲置很久了 因为比赛和找工作的事情导致许欸小延期了很久 还是因为懒 最近从小仓库把板子捞出来了 上手玩一玩 本次学习参考了B站up 小铭同学 的教程 教程
  • 力扣 2697. 字典序最小回文串

    题目来源 https leetcode cn problems lexicographically smallest palindrome C 题解 从两端往中间判断 不同时则用字典序小的替换字典序大的 class Solution pub
  • mysql存储引擎

    目录 一 存储引擎概念 二 MyISAM特点介绍 三 MyISAM适用的生产场景举例 四 InnoDB特点介绍 五 InnoDB适用生产场景分析 六 企业选择存储引擎的依据 1 需要考虑每个存储引擎提供了哪些不同的核心功能及应用场景 2 支
  • 机器学习算法:特征工程-特征提取

    学习目标 了解什么是特征提取 知道字典特征提取操作流程 知道文本特征提取操作流程 知道tfidf的实现思想 什么是特征提取呢 1 特征提取 1 1 定义 将任意数据 如文本或图像 转换为可用于机器学习的数字特征 注 特征值化是为了计算机更好