低通滤波器和高通滤波器的程序实现原理推导

2023-05-16

傅立叶变换,拉普拉斯变换和Z变换

对于信号分析而言,傅立叶变换是必不可少的,我们都知道傅立叶变换是把系统从时域变换到频域进行分析,那么拉普拉斯变换和Z变换是干什么的?简单的来说,由于傅里叶变换的收敛有一个狄利克雷条件,要求信号绝对可积/绝对可和。对于那些不符合狄利克雷条件的信号该怎么办呢,我们将频域的概念扩展到复频域.首先要说明的是傅立叶变换大致有两种,连续时间的傅立叶变换(CTFT)和离散的傅立叶变换(DTFT).而对于CTFT而言,拉普拉斯变换就是将连续时间系统的傅立叶变换扩展了;而对于DTFT而言,Z变换就是将离散时间系统的傅立叶变换扩展了.知乎上有一个很好的对三种变换的解释:傅立叶变换、拉普拉斯变换、Z变换的联系


RC一阶低通滤波器的算法推导

一阶的RC电路如下:
这里写图片描述
这里直接给出其s域的传递函数:

VoutVin=1RCs+1,(s=jω) V o u t V i n = 1 R C s + 1 , ( s = j ω )

对其进行z变换(一阶后差分):
s=1z1T,T s = 1 − z − 1 T , T 表 示 采 样 周 期
则传递函数变为:
Y(z)X(z)=TRC(1Z1)+T Y ( z ) X ( z ) = T R C ( 1 − Z − 1 ) + T

又因为 Y(z)=Y(n)zn,Y(n1)Y(n)=z1 Y ( z ) = Y ( n ) z − n , 且 Y ( n − 1 ) Y ( n ) = z − 1 , X(z)=X(n)zn,X(n1)X(n)=z1 X ( z ) = X ( n ) z − n , 且 X ( n − 1 ) X ( n ) = z − 1 ,代入到上式的传递函数得:
Y(n)=TT+RCX(n)+RCT+RCY(n1) Y ( n ) = T T + R C X ( n ) + R C T + R C Y ( n − 1 )

其中:
X(n): X ( n ) : 本 次 采 样 值
Y(n1): Y ( n − 1 ) : 上 次 滤 波 值
a=TT+RCTRC=ωT=2πfT a = T T + R C ≈ T R C = ω T = 2 π f T
则滤波公式为:
Y(n)=aX(n)+(1a)Y(n1) Y ( n ) = a ∗ X ( n ) + ( 1 − a ) ∗ Y ( n − 1 )

这与px4代码的lib库中低通滤波是一样的:

float BlockLowPass::update(float input)
{
    if (!PX4_ISFINITE(getState())) {
        setState(input);
    }

    float b = 2 * float(M_PI) * getFCut() * getDt();
    float a = b / (1 + b);
    setState(a * input + (1 - a)*getState());//input:本次采样值 getState():上次滤波值
    return getState();
}

一阶RC高通滤波器

RC高通滤波器原理图如下,它和低通相反,电阻两端的电压作为输出,则其s域的传递函数为:

VoutVin=RCsRCs+1 V o u t V i n = R C s R C s + 1

z z 变换(一阶后向差分):
s=1z1T

得到 z z 域的传递函数为:
Y(z)X(z)=RC(1z1)RC(1z1)+T

同样的, Y(z)=Y(n)zn,Y(n1)Y(n)=z1 Y ( z ) = Y ( n ) z − n , 且 Y ( n − 1 ) Y ( n ) = z − 1 , X(z)=X(n)zn,X(n1)X(n)=z1 X ( z ) = X ( n ) z − n , 且 X ( n − 1 ) X ( n ) = z − 1 ,则有:
Y(n)=RCRC+T(X(n)X(n1)+Y(n1)) Y ( n ) = R C R C + T ( X ( n ) − X ( n − 1 ) + Y ( n − 1 ) )

其中:
X(n): X ( n ) : 本 次 采 样 值
X(n1): X ( n − 1 ) : 上 次 采 样 值
Y(n1): Y ( n − 1 ) : 上 次 滤 波 值
我们令令 b=TT+RCTRC=ωT=2πfT b = T T + R C ≈ T R C = ω T = 2 π f T , a=11+b a = 1 1 + b
则高通滤波的算法公式为:
Y(n)=b(X(n)X(n1)+Y(n1)) Y ( n ) = b ∗ ( X ( n ) − X ( n − 1 ) + Y ( n − 1 ) )

这与px4中的高通滤波是一样的:


float BlockHighPass::update(float input)
{
    float b = 2 * float(M_PI) * getFCut() * getDt();
    float a = 1 / (1 + b);
    setY(a * (getY() + input - getU()));//getY():上次滤波器输出值;getU():上次滤波器输入值
    setU(input);
    return getY();
}

这里写图片描述


总结

关于低通滤波和高通滤波,最关键的是学到了三类变换的关系以及离散化的方法,留下各位大佬的博客链接在此:
【滤波器学习笔记】一阶RC低通滤波
傅立叶变换、拉普拉斯变换、Z变换的联系
基础电路—RC组成的低通、高通滤波器
双线性变换
z变换

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

低通滤波器和高通滤波器的程序实现原理推导 的相关文章

  • ORB SLAM2 编译&运行

    1 依赖安装 xff1a 1 xff09 安装 GLEW xff1a sudo apt get install libglew dev 2 xff09 安装 libuvc xff1a git clone https github com k
  • SAP 一句话入门之SD

    SD是Sales and Distribution的简称 在SAP系统中 xff0c 销售与分销模块处在供应链下游 xff0c 关注从客户订单到向客户收款的全过程 SD模块中的Sales好理解 xff0c 而Distribution却容易被
  • realsense-ros安装

    一 realsense ros安装 1 Create a catkin workspace mkdir p realsense rosws src cd realsense rosws src catkin init workspace 2
  • thinkphp页面请求时间超过40S报404错误解决办法

    最近在写一个thinkphp项目的时候 xff0c 发现Ajax从后端请求数据时间比较长 xff0c 大概需要45秒左右 xff0c 但是一旦请求时间超过40s xff0c 页面就会超时404了 xff0c 一开始以为是ajax请求时间不能
  • C语言宏定义详解

    宏定义引入 源程序在编译之前 xff0c 会先进行预处理 预处理并不是C语言编译器的组成部分 xff0c 不能直接对它们进行编译 经过预处理后 xff0c 程序就不再包括预处理命令了 xff0c 最后再由编译程序对预处理之后的源程序进行编译
  • C语言枚举详解

    枚举的引入 枚举是C语言中的一种基本数据类型 xff0c 它可以让数据更简洁 xff0c 更易读 枚举语法定义格式为 xff1a enum 枚举名 枚举元素1 枚举元素2 注意 xff0c 各元素之间用逗号隔开 注意 xff0c 末尾有分号
  • STC-ISP使用指南

    该软件无需安装 xff0c 下载后打开直接用 本软件是专门给STC系列单片机下载烧录程序的 xff0c 并不能适用于ARM系列的单片机 界面介绍 xff1a 打开后的界面如下 xff1a 左边的部分一般是用来下载程序的 xff0c 右面一般
  • STM32前言知识总结

    目录 关于STM32 STM32F1 存储器 位带操作 三种启动模式 低功耗模式 复位 时钟系统 STM32库 仿真器和调试器 注 xff1a 本文大部分内容来自于STMCU官网以及STM32数据手册 STM32使用的是ARM公司的Cort
  • STM32的标准库及其使用

    单片机的开发工作量 xff0c 主要集中在两个地方 xff0c 一是调通各种外设 xff0c 二是实现产品功能 像较高级的语言 xff0c 比如c 43 43 java python等 因为将底层操作进行了封装 xff0c 所以只需要集中关
  • PADS(一)简介、安装与基本使用

    PADS是一款制作PCB板的软件 PADS包括PADS Logic PADS Layout和PADS Router PADSLayout xff08 PowerPCB xff09 提供了与其他PCB设计软件 CAM加工软件 机械设计软件的接
  • 电路中的常见符号总结

    嵌入式如何阅读原理图和数据手册 路溪非溪的博客 CSDN博客 硬件原理图常见缩写 EN xff1a Enable xff0c 使能 CS xff1a Chip Select xff0c 片选 RST xff1a Reset xff0c 重启
  • 嵌入式常见英文2500词总结

    目录 嵌入式硬件常见英文总结 嵌入式软件常见英文总结 电子技术专业英语 嵌入式硬件常见英文总结 block diagram xff0c 框图 figure xff0c 图形 xff0c 图标 processor xff0c 处理器 Mirr
  • 我的2013—弃金融IT,从SAP业务

    我的2013 xff0c 是动荡的一年 xff1b 这一年 xff0c 我跳巢了 xff1b 这一年 xff0c 我换行业了 xff1b 这一年 xff0c 我离开了生活5年的长春 xff0c 来到成都 xff1b 这一年 xff0c 我放
  • STM32实战总结:HAL之电机

    电机基础知识参考 xff1a 51单片机外设篇 xff1a 电机 路溪非溪的博客 CSDN博客 无刷电机和有刷电机 先详细了解有刷电机 xff1a 带你了解 xff08 有刷 xff09 电机工作原理 哔哩哔哩 bilibili 再详细了解
  • F407标准库之时钟系统

    主要参考正点原子数据手册和源码资料等 第19讲 STM32时钟系统精讲 哔哩哔哩 bilibili 此处记录较为重要或者较易出错的一些遗漏之处 xff0c 作为补充 一般而言 xff0c 时钟越高 xff0c 速度越快 xff0c 但同时抗
  • F407标准库之定时器

    主要参考正点原子数据手册和源码资料等 第31 通用定时器基本原理讲解 哔哩哔哩 bilibili 此处记录较为重要或者较易出错的一些遗漏之处 xff0c 作为补充 定时器中断 定时器相关的库函数主要集中在固件库文件 stm32f4xx ti
  • F407标准库之基础知识

    关于STM32的结构体封装 在STM32中 xff0c 有两种容易弄混的结构体封装 第一种是系统对底层寄存器的封装 结构体类型定义好之后 xff0c 是不会分配地址空间的 xff0c 此时只是个类型定义 xff0c 之后使用的时候 xff0
  • c++架构师需要掌握哪些知识

    目录 本文技术梳理主要针对于三类人群的技术需求 c c 43 43 Linux服务器端开发岗位分析 经常被问到的问题 xff1a 技术体系建立的好处 c c 43 43 Linux服务器开发技术学习路径 一 精进基石 二 高性能网络设计 三
  • cmake:使用execute_process调用shell命令或脚本

    CMake可以通过execute process调用shell命令或者脚本 xff0c 其原型如下 xff1a execute process COMMAND lt cmd1 gt args1 COMMAND lt cmd2 gt args

随机推荐

  • 树莓派3B+上安装ubutun mate 18.04.2

    1 准备16G以上储存卡 xff0c 读卡器 2 准备两个软件 xff1a SDCardFormatter Win32DiskImager分别用于储存卡格式化和写入系统文件 链接如下 xff1a 链接 xff1a https pan bai
  • linux应用编程--思维导图

    思维导图软件是xmind 下载源文件点击打开链接
  • 深度学习中Batch、Iteration、Epoch的概念与区别

    在神经网络训练中 xff0c 一般采用小批量梯度下降的方式 Batch Epoch Iteration 就是其中的重要的概念 我们要理解懂得它们都是什么以及它们之间的区别 1 Batch 每次迭代时使用的一批样本就叫做一个Batch xff
  • STM32使用CubeMAX配置的串口中断接收方法

    STM32使用CubeMAX配置的串口中断接收方法 目录 1 定位串口中断发生的地方 2 处理串口中断接收的流程是 xff1a xff08 1 xff09 初始化串口 xff08 2 xff09 在main中第一次调用接收中断函数 xff0
  • SAP 寻找增强点的方法

    SAP中寻找增强的实现方法 SAP 增强已经发展过几代了 xff0c 可参考 SAP 标准教材 BC425 和 BC427 简单的说SAP的用户出口总共有四 代 1 第一代 基于源代码的增强 SAP提供一个空代码的子过程 xff0c 在这个
  • SNMPV3的实现原理

    在snmp发展到V3版本后 xff0c 把snmp的安全性提升到一个新高度 xff0c 这同时也带来了实现上的复杂性 在02年 xff0c 03年我都曾经想进一步的了解它的实现 xff0c 但都没什么进展 这次在实现Csnmp的过程中 xf
  • ubuntu更新错误:dists/artful/main/binary-arm64/Packages 404 Not Found

    Failed to fetch http archive ubuntu com ubuntu dists artful main binary arm64 Packages 404 Not Found IP 91 189 88 162 80
  • 个人公众号开通啦!!!!

    已经开通了个人微信公众号 xff1a 编程时光机 以后会在公众号里和大家分享知识和生吞活 xff0c 欢迎大家关注 xff01 xff01
  • 小白学AI系列(一)-- AI简史

    经过一段时间的酝酿 xff0c 小白学AI系列也正是开始了 xff01 小编将从三个阶段和大家一起入门人工智能 xff0c 掌握常用机器学习算法和数据分析技巧 小编专业为数据融合方向 xff0c 也曾接触过机器学习 xff0c 但由于人工智
  • 小白学AI系列(二) -- Python模块和函数

    原文地址 xff1a 小白学AI系列 xff08 二 xff09 Python模块和函数 今天的内容是带大家学习解释性语言 Python 小编有学过一段时间的C 43 43 和Matlab 相对于二者而言 xff0c Python是作为学习
  • PX4固定翼调试校准流程及实验相关问题记录分析

    pixhawk固定翼调试流程 对于px4固件 xff0c 其对应选择的一般是qgroundcontrol地面站 xff08 APM一般使用Mission Planner xff09 本次调试的固件版本是1 6 5dev xff08 最新的固
  • Ubuntu16.04下PX4环境快速搭建及uORB通信机制

    Ubuntu16 04下的环境搭建 之前搭建PX4环境常常编译不通 xff0c cmake gcc 以及交叉编译器gcc arm none eabi的版本问题导致make固件报错 xff0c 好不容易编译通过了 xff0c 在进行安装jMA
  • PX4固件通过UART连接串口读取超声波,和树莓派3通信

    添加串口读取程序 首先在Firmware msg文件夹下添加rw uart msg span class hljs keyword char span span class hljs number 5 span datastr span c
  • PX4自主飞行相关问题

    调试入坑 赶在回去之前把10月1日新校区试飞相关问题记录一下 首先是调试相关问题 调试具体流程 在校准遥控器时经常出现校准一半就停止的问题 xff0c 期初认为是固件问题 xff0c 换了1 6 5 1 6 3 xff0c 1 5 5三个固
  • PID控制器及其C++实现

    PID控制器原理 PID控制器实际上是对偏差的控制 其原理图如下 其数学的表达如下 u x 61 K p e r r t 43 1 T e r r t d t 43 T D d e r r t d t u x
  • Oracle Systimestamp 函数

    在Oracle PLSQL中 xff0c Systimestamp 函数返回本机数据库上当前系统日期和时间 包括微秒和时区 Systimestamp 函数的语法是 xff1a systimestamp 应用于 xff1a Oracle 9i
  • px4源码解读之fw_att_control

    目录 程序和控制流程源码解读总结 程序和控制流程 个人简单的总结了一下整个程序的流程如下 整个的控制流程图可以在官网中找到 源码解读 在解读源码之前 需要提几个公式 第一个就是协调转弯中的偏航控制 也就是流程图中为什么输入是空速 p 61
  • 安装Mavlink generator出现UnicodeEncodeError错误

    最近在看mavlink 在执行官网的操作时出现了问题 问题如下 span class hljs constant Exception span span class hljs keyword in span span class hljs
  • mc_att_control基础知识:向量运算和罗德里格斯旋转

    向量的叉乘和点乘 在我们的mc att control中有我们的向量的点乘和叉乘 一般遇到的都是三维的运算 S O 3 S O 3 李群 向量点乘 假设向量 a 61 a 1 a 2 a 3
  • 低通滤波器和高通滤波器的程序实现原理推导

    傅立叶变换 拉普拉斯变换和Z变换 对于信号分析而言 傅立叶变换是必不可少的 我们都知道傅立叶变换是把系统从时域变换到频域进行分析 那么拉普拉斯变换和Z变换是干什么的 简单的来说 由于傅里叶变换的收敛有一个狄利克雷条件 xff0c 要求信号绝