mavlink协议从入门到放弃(一)

2023-05-16

mavlink协议从入门到放弃(一)

  • 什么是MAVLINK协议
    • 网站和参考资料
    • MAVLINK简介
  • MAVLINK协议包结构
    • 协议结构
    • mavlink协议解析

最近比较忙,搞了个项目用到了mavlink协议,将数据上传至QGC上位机,之前稍微看了一下mavlink的协议,但是很粗略,这次记录一下。
先分享个关于mavlink的网站:
1.mavlink的官网,从里面可以了解mavlink协议,还有各个功能帧的组成和ID:https://mavlink.io/en

什么是MAVLINK协议

网站和参考资料

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。
在这里插入图片描述

就是这个网站,如果想查看各个功能ID的组成,可以在左上角可以随便搜索一个功能帧的数字,比如心跳的#0,然后进入message,就可以看左上角就可以跳转到功能帧的地方了。
在这里插入图片描述

MAVLINK简介

因为在学习Mavlink协议的时候也参考了很多其他博主对该协议的讲解,所以也就提一下简介吧。
Mavlink协议最早由 苏黎世联邦理工学院 计算机视觉与几何实验组 的 Lorenz Meier于2009年发布,并遵循LGPL开源协议。Mavlink协议是在串口通讯基础上的一种更高层的开源通讯协议,主要应用在微型飞行器(micro aerial vehicle)的通讯上。Mavlink是为小型飞行器和地面站(或者其他飞行器)通讯时常常用到的那些数据制定一种发送和接收的规则并加入了校验(checksum)功能。
协议以消息库的形式定义了参数传输的规则。MavLink协议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种类型的无人机。MAVLink协议是在CAN总线和SAE AS-4 标准的基础上设计形成的。

MAVLINK协议包结构

协议结构

这里仅对mavlink_v1版本进行介绍。
在这里插入图片描述

mavlink协议解析

mavlink的协议开头都是以FE开始的。例如心跳包

FE 09 57 01 01 00 00 00 01 00 02 0C 51 03 03 04 5F

FE就是起始标志位,用于证明消息的来到。
而09就是数据帧里面的字节长度,也就是00 00 01 00 02 0C 51 03 03这一段。
57代表的是序列码,每次发一个数据,改位置数就加一,通常通过该位置来计算信号的质量。
01代表了发送本条消息帧的设备的系统编号,使用PIXHAWK飞控时默认的系统编号为1,用于mavlink消息帧接收端识别是哪个设备发来的消息。
第5个位没什么卵用。
00表示的为,通过刚刚的网站可以知道心跳包的消息ID是#0,所以第六位为00,同理其他的消息ID也写在这里。
最后两个是CRC的校验位。

心跳包它一般用来表明发出该消息的设备是活跃的,飞行器和地面站都会发出这个信号(一般以1Hz发送),地面站和飞行器会根据是否及时收到了心跳包来判断是否和飞行器或地面站失去了联系。如果我们想要将我们的单片机通过串口将数据发送到QGC地面站上显示的话,心跳包是必不可少的,如果我们不想麻烦的将整个mavlink协议移植到单片机上,只想用显示功能的话,只需要通过串口发送特定的消息帧即可。
心跳包发送后可以连接地面站,连接成功后可以打开QGC的分析工具,看到发送的消息帧情况。
在这里插入图片描述
在心跳包的9个数据中来一个一个介绍,也可以通过mavlink官网去看,这里做一个简单介绍,第一个是占一个字节的飞行器类型数据(type),这个数据表示了当前发消息的是什么飞行器,比如四旋翼,固定翼等等。type的取值如何与飞行器类型对应,这要在官方的mavlink消息介绍网页上找,位于网页开始出的数据枚举中。
第二个参数是自驾仪(即通常所说的飞控)类型,比如apm,ppz,Pixhawk等飞控,具体定义查找和之前查找飞行器类型时的方法一样。同样的,对于发送心跳包的飞行器来说代表了自己的飞控类性,对地面站发出的心跳包来说意义不大。
第三个参数是基本模式(base mode),是指飞控现在处在哪个基本模式,对于发心跳包的地面站来说没有意义,对于发送心跳包的飞控来说是有意义的。这个参数要看各个飞控自己的定义方式,mavlink介绍网页并不会给出具体的模式。在Pixhawk中基本模式可以分为使用用户模式(custom mode)还是基本模式(这里有点绕,其实是就是是否使用用户模式)。使用用户模式将在讲下个参数时说明,使用基本模式又会分为自动模式(auto),位置控制模式(posctl)和手动模式(manual)。
第四个参数是用户模式(custom mode),大概说一下Pixhawk的用户模式。以多轴为例。它分为主模式(main mode)和子模式(sub mode),两种模式组合在一起成为最终的模式,主模式分为3种,手动(manual),辅助(assist),自动(auto)。手动模式类似apm的姿态模式。在辅助模式中,又分为高度控制模式(altctl)和位置控制模式(posctl)两个子模式,高度控制模式就类似apm的定高模式,油门对应到飞行器高度控制上。位置模式控制飞行器相对地面的速度,油门和高度控制模式一样,yaw轴控制和手动模式一样。自动模式里又分为3个子模式,任务模式(mission),留待模式(loiter),返航模式(return),任务模式就是执行设定好的航点任务,留待模式就是gps悬停模式,返航模式就是直线返回home点并自动降落。
第五个是系统状态(system status),查定义就好了,其中的standby状态在Pixhawk里就是还没解锁的状态,active状态就是已经解锁,准备起飞的状态。
第六个是mavlink版本(mavlink version)。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

mavlink协议从入门到放弃(一) 的相关文章

  • PX4/Pixhawk---uORB深入理解和应用(最新版)

    1 简介 ps 第1章简介是参考 uORB深入理解和应用 1 1 PX4 Pixhawk的软件体系结构 PX4 Pixhawk的软件体系结构主要被分为四个层次 xff0c 这可以让我们更好的理解PX4 Pixhawk的软件架构和运作 xff
  • 深拷贝和浅拷贝的区别

    1 简单理解 深拷贝和浅拷贝最根本的区别在于是否真正获取一个对象的复制实体 xff0c 而不是引用 假设B复制了A xff0c 修改A的时候 xff0c 看B是否发生变化 xff1a 如果B跟着也变了 xff0c 说明是浅拷贝 xff0c
  • Linux系统下搭建PX4/Pixhawk原生固件编译环境

    对于新版本的固件V1 11 3 在pixhawk官网可以找到开发环境的搭建 xff0c 这里把开发环境链接贴出来 xff1a https docs px4 io master zh dev setup dev env linux ubunt
  • Pixhawk无人机飞行模式详解 (PX4源码)

    我帮大家把飞行模式控制量与特点总结一下 xff0c 方便看代码 xff0c 如下所示 xff1a 辅助模式 Position Mode 位置模式 xff08 定点模式 xff09 横滚俯仰控制角度 xff0c 油门控制上下速度 xff0c
  • pixhawk无人机避障

    本人最近用树莓派结合PX4做无人机避障 xff0c 使用激光雷达 xff0c 有没有一起的小伙伴 xff0c 我们一起交流 xff01 私信我 xff0c
  • 目录前导符不一致解决办法

    最近弄毕业设计 xff0c 写完论文以后发现生成的目录后面的前导码省略号数目 间距不一致 xff0c 非常的难看 xff0c 于是经过仔细研究找到了解决办法 xff1a 首先是问题所在 xff0c 请看下图 xff1a 首先在word中打开
  • 几种编码方式(RZ、NRZ、NRZI、曼彻斯特编码)

    在数字电路中 xff0c 组成一连串信息的基元就是0和1 xff0c 无论是在CPU DSP MCU甚至是个数字计数器中 xff0c 数字电路在其中能够处理的信息也只有0和1 xff0c 而对于任何外界的信息 xff0c 计算机都能通过两个
  • WIN10运行软件,窗口不显示 解决办法

    win10 运行软件后 xff0c 不显示窗口 今天遇到个问题 xff0c 我打开软碟通之后 xff0c 任务栏显示它已经打开了 xff0c 但是窗口就是不显示 xff0c 如下图 xff1a 用alt 43 tab 查看 xff0c 也能
  • 变频器的四大组成部分和工作原理

    随着电子技的发展变频器已经有了很大的变化 xff0c 但其基本原理并没有发生改变 变频器的主要部分有四个 xff1a 整流器 中间电路 逆变器 控制电路 1 xff09 整流器 通用变频器的整流电路是由三相桥式整流桥组成 它的功能是将工频电
  • Pytorch中torch的操作合集

    tensor的基本操作 PyTorch系例 torch Tensor详解和常用操作 这里最重要的概念是索引出来的结果与原数据共享内存 xff0c 也即修改一个 xff0c 另一个也会跟着修改 tensor的广播机制 Pytorch xff1
  • torch.tensor 内存共享机制

    tensor属于可变数据类型 xff0c 因此变量的值存储在堆中 xff0c 变量名存储在栈中 xff0c 当进行变量赋值时 xff0c 就是让栈中的变量指向堆 xff0c 如下面代码 xff1a span class token keyw
  • 熵 KL散度 交叉熵的理解

    熵 KL散度 交叉熵的概念 xff1a 理解二分类交叉熵 可视化的方法解释对数损失交叉熵公式推导 xff1a 理解交叉熵作为损失函数在神经网络中的作用熵 KL散度 交叉熵的关系 xff1a KL散度与交叉熵区别与联系训练过程中三者的应用 x
  • Docker数据目录迁移解决方案

    介绍 在docker的使用中随着下载镜像越来越多 xff0c 构建镜像 运行容器越来越多 数据目录必然会逐渐增大 xff1b 当所有docker镜像 容器对磁盘的使用达到上限时 xff0c 就需要对数据目录进行迁移 如何避免 xff1a 1
  • Git 三剑客 ———— git gui 可视化工具

    目录 页面介绍Unstaged changesStaged Changes xff08 Will Commit xff09 File DisplayCommand Set Repository 操作区Edit 操作区Branch 操作区Co
  • 数组对象转json格式

    1 数组转化成JSON对象后 xff0c key值是索引 xff0c value是数组对应的值 数组也可以转化成JSON对象 var jStr3 61 34 10 20 30 40 50 60 34 var j3 61 JSON parse
  • JS——DOM的结点操作

    H5自定义属性 自定义属性目的 目的 xff1a 是为了保存并且使用数据 有些数据可以把保存到页面中而不用保存到数据库 可以通过getAttribute获取 自定义属性 xff1a data 开头 这是一种规范 dataset xff1a
  • SecureCRT连接Linux

    在将SecureCRT连接Linux上时遇到一些问题 xff0c 记录如下 第一步 xff0c 我们要在在linux上安装openssh server服务 xff0c 并确认打开了22监听端口 在linux上操作命令如下 xff1a apt
  • Linux下添加虚拟串口,接收和发送数据

    之前写的那虚拟串口有点问题 xff0c 只能读取 xff0c 不能接收 今天再来改一下 将python的内容改为如下 xff1a 先新建一个文档 xff0c 内容如下 usr bin env python coding 61 utf 8 i
  • fatal: The remote end hung up unexpectedly解决办法

    今天在写完代码后 xff0c 准备提交到GitHub上 xff0c 结果得到了下面的结果 xff0c 记录一下 百度了之后 xff0c 发现大部分是有两种说法 一种是说提交的文件太大 xff0c 解决办法如下 link 一种是说管理员将项目
  • 简单了解几种常见的网络通信协议

    常见的网络协议有 TCP IP协议 UDP协议 HTTP协议 FTP协议 Telnet协议 SMTP协议 NFS协议等 这里主要简述一下前三种协议 一 TCP IP协议 1 什么是TCP IP协议 xff1f TCP IP传输协议 xff0

随机推荐