FreeRTOS优先级翻转

2023-05-16

优先级翻转

优先级翻转:高优先级的任务反而慢执行,低优先级的任务反而优先执行

优先级翻转在抢占式内核中是非常常见的,但是在实时操作系统中是不允许出现优先级翻转的,因为优先级翻转会破坏任务的预期顺序,可能会导致未知的严重后果。

在使用二值信号量的时候,经常会遇到优先级翻转的问题。

举例说明

优先级翻转示意图,如上图所示,定义:任务H为优先级最高的任务,任务L为优先级中最低的任务,任务M为优先级在任务H和任务L之间的任务。

也就是说任务优先级:任务H>任务M>任务L

(1)任务H和任务M为阻塞状态,等待某一事件发生,此时任务L正在运行

(2)此时任务L要访问共享资源,因此需要获取信号量

(3)任务L成功获取信号量,并且此时信号量已无资源,任务L开始访问共享资源

(4)此时任务H就绪,抢占任务L运行

(5)任务H开始运行

(6)此时任务H要访问共享资源,因此需要获取信号量,但信号量已无资源(注:这里信号量为二值信号量),因此任务H阻塞等待信号量资源

(7)任务L继续运行

(8)此时任务M就绪,抢占任务L运行

(9)任务M正在运行

(10)任务M运行完毕,继续阻塞

(11)任务L继续运行

(12)此时任务L对共享资源的访问操作完成,释放信号量,虽有任务H因成功获取信号量,解除阻塞并抢占任务L运行

(13)任务H得以运行

从上面的优先级翻转的示例中,可以看出,任务H为优先级最高的任务,因此任务H执行的操作需要有较高的实时性,但是由于优先级翻转的问题,导致了任务H需要等到任务L释放信号量才能够运行,并且,任务L还会被其他介于任务H与任务L任务优先级之间的任务M抢占,因此任务H还需等待任务M运行完毕,这显然不符合任务H需要的高实时性的要求。

个人总结

任务优先级翻转在实时操作系统中是不允许出现的,使用互斥量的优先级继承可以解决优先级翻转的问题,但是这里只是能够降低优先级翻转带来的影响,而不能完全消除优先级翻转带来的问题,通俗的说,虽然低优先级任务优先级提高了,但是还是要等优先级低的任务执行释放操作,高优先级任务才可以得以运行,这里只是解决了介于低优先级和高优先级之间中优先级任务带来的问题。比如没有引入互斥量,高优先级需要等待L+M任务运行的时间,引入之后只有任务L运行的时间。

一句话:优先级翻转可以减轻,但不能完全消除。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

FreeRTOS优先级翻转 的相关文章

  • FreeRTOS系列

    1 多任务系统 1 1 前后台系统 单片机裸机开发时 一般都是在main函数里面用while 1 做一个大循环来完成所有的处理 循环中调用相应的函数完成所需的处理 有时也需要在中断中完成一些处理 相对于多任务系统而言 这就是单人单任务系统也
  • FreeRTOS例程4-串口DMA收发不定长数据

    FreeRTOS例程4 串口DMA收发不定长数据 知乎 zhihu com
  • STM32F103移植FreeRTOS必须搞明白的系列知识---3(堆栈)

    STM32F103移植FreeRTOS必须搞明白的系列知识 1 Cortex CM3中断优先级 STM32F103移植FreeRTOS必须搞明白的系列知识 2 FreeRTOS任务优先级 STM32F103移植FreeRTOS必须搞明白的系
  • FreeRTOS 软件定时器的使用

    FreeRTOS中加入了软件定时器这个功能组件 是一个可选的 不属于freeRTOS内核的功能 由定时器服务任务 其实就是一个定时器任务 来提供 软件定时器是当设定一个定时时间 当达到设定的时间之后就会执行指定的功能函数 而这个功能函数就叫
  • FreeRTOS软件定时器创建、复位、开始和停止(备忘)

    目录 一 简介 1 1 开发环境 1 2 摘要 二 STM32CubeIDE配置 三 创建定时器 3 1 头文件声明 3 2 工程文件定义 3 3 创建定时器 3 4 开启 复位 和关闭定时器 四 定时器回调函数 一 简介 1 1 开发环境
  • 解决错误“ #error “include FreeRTOS.h“ must appear in source files before “include event_groups.““例子分享

    今天来给大家分享一下 关于之前自己在学习FreeRTOS过程中遇到的一个错误提示 话不多说 我们直接来看 错误分析 首先 我们看一下错误的提示 error 35 error directive include FreeRTOS h must
  • 一文教你学会keil软件仿真

    仿真在我们调试代码中是非常重要的 通过仿真 我们可以快速定位到错误代码 或者错误逻辑的地方 这里我就以上一篇博客为例 教大家如何软件仿真 软件仿真不需要单片机 直接通过keil软件进行代码调试 一 打开工具 二 选择软件仿真 三 开始仿真
  • FreeRTOS系列

    本文主要介绍如何在任务或中断中向队列发送消息或者从队列中接收消息 使用STM32CubeMX将FreeRTOS移植到工程中 创建两个任务以及两个消息队列 并开启两个中断 两个任务 Keyscan Task 读取按键的键值 并将键值发送到队列
  • freertos---软定时器

    一 软件定时器介绍 freeRTOS软件定时器的时基是基于系统时钟节拍实现的 可以创建很多个 在硬件定时器资源不充足的情况下非常有用 软件定时器一般用作周期性地执行函数 在创建软件定时器时指定软件定时器的回调函数 在回调函数中实现相应的功能
  • FreeRTOS系列

    1 RTOS简介 RTOS全称为 Real Time Operation System 即实时操作系统 RTOS强调的是实时性 又分为硬实时和软实时 硬实时要求在规定的时间内必须完成操作 不允许超时 而软实时里对处理过程超时的要求则没有很严
  • ZYNQ中FreeRTOS中使用定时器

    使用普通的Timer中断方式时 Timer中断可以正常运行 但是UDP通信进程无法启动 其中TimerIntrHandler是中断服务程序 打印程序运行时间与从BRAM中读取的数据 void SetupInterruptSystem XSc
  • FreeRTOS+CubeMX系列第一篇——初识FreeRTOS

    文章目录 一 关于FreeRTOS 二 FreeRTOS的特点 三 如何在CubeMX上配置FreeRTOS 四 FreeRTOS文档资料 五 同系列博客 一 关于FreeRTOS 1 什么是FreeRTOS FreeRTOS是一个迷你的实
  • freeRTOS使用uxTaskGetStackHighWaterMark函数查看任务堆栈空间的使用情况

    摘要 每个任务都有自己的堆栈 堆栈的总大小在创建任务的时候就确定了 此函数用于检查任务从创建好到现在的历史剩余最小值 这个值越小说明任务堆栈溢出的可能性就越大 FreeRTOS 把这个历史剩余最小值叫做 高水位线 此函数相对来说会多耗费一点
  • FreeRTOS_中断

    传送门 博客汇总帖 传送门 Cortex M3 中断 异常 传送门 Cortex M3笔记 基础 笔记内容参考 正点原子的FreeRTOS开发手册 cortex m3权威指南 Cortex M3和Cortex M4权威指南等 文中stm32
  • FreeRTOS:中断配置

    目录 一 Cortex M 中断 1 1中断简介 1 2中断管理简介 1 3优先级分组定义 1 4优先级设置 1 5用于中断屏蔽的特殊寄存器 1 5 1PRIMASK 和 FAULTMASK 寄存器 1 5 2BASEPRI 寄存器 二 F
  • freeRTOS出现任务卡死的情况。

    最近在做一个产品二代升级的项目 代码是上一任工程师留下的 很多BUG 而且融合了HAL库和LL库 以及github上下载的GSM源码 很不好用 我这边是将2G模块换成了4G 且添加了单独的BLE模块 因此只在源码的基础上 去除2G和BLE代
  • FreeRTOS笔记(二)

    FreeRTOS笔记 二 静态任务 文章目录 FreeRTOS笔记 二 静态任务 一 任务定义 二 任务创建 2 1 定义任务栈 2 2 定义任务函数 2 3 定义任务控制块 2 4 实现任务创建函数 三 实现就绪列表 3 1 定义就绪列表
  • FreeRTOS多任务调度器基础

    Cortex M4中SysTick调度器核心 Cortex M4中的中断管理 Cortex M4中影子栈指针 Cortex M4中SVC和PendSV异常 1 Cortex M4中SysTick调度器核心 systick每一次中断都会触发内
  • FreeRTOSConfig.h 配置优化及深入

    本篇目标 基于上一篇的移植freertos stm32f4 freertos 上 修改 FreeRTOSConfig h 文件的相关配置来优化辅助 FreeRtos 的使用 并且建立一些基本功能 信号量 消息地列等 的简单应用位于 stm3
  • 当 Cortex-M3 出现硬故障时如何保留堆栈跟踪?

    使用以下设置 基于 Cortex M3 的 C gcc arm 交叉工具链 https launchpad net gcc arm embedded 使用 C 和 C FreeRtos 7 5 3 日食月神 Segger Jlink 与 J

随机推荐

  • 实习面试的总结

    2023 4 3 阿凡达机器人 驱动开发实习生 1 怎么注册一个字符设备 注销 1 注册一个设备号 2 设备号加载进内核 3 创建类 4 创建设备 注销 1 从内核中删除 2 删除设备 3 删除类 2 怎么将新加入的网络设备加入到内核中去
  • 字符设备结构体与probe函数

    1 设备结构体 设备结构体 struct ap3216c dev dev t devid 设备号 主设备号 43 次设备号 struct cdev cdev cdev 字符设备对象 xff0c 字符设备驱动的一种结构体类型 struct c
  • SLAM --- VIO 基于 EKF 开源

    1 VIO based on EKF 已知一致性的Visual Inertial EKF SLAM 实现添加链接描述
  • 暗夜精灵7 linux

    Ubuntu18 04 安装nvidia显卡驱动 distro non free 小乌坞的博客 CSDN博客 注意在关闭显示界面的时候需要输入密码 xff0c 不然会一直卡着 在验证是否屏蔽驱动的时候 xff0c 要先重启一下 cuda L
  • linux应用编程

    项目内容 开发板内部使用c语言调用硬件驱动实现各种测试功能 xff0c 保存测试结果 外部程序通过socket接口使用tcp协议与开发板通信进行信息传输 xff0c 最后使用python GUI构造一个界面按照测试顺序逐步显示出各个模块的测
  • NUC10快乐装机

    NUC10装机 由于为了RoboMaster比赛 xff0c 身为全队唯一一个视觉队员兼队长的我 xff0c 经过疫情期间的再三斟酌 xff0c 最后决定工控机选择为nuc10 为什么选择nuc10 作为第一年参赛的新队伍 xff0c 视觉
  • 什么是PID?讲个故事,通俗易懂

    什么是PID xff1f PID xff0c 就是 比例 xff08 proportional xff09 积分 xff08 integral xff09 微分 xff08 derivative xff09 xff0c 是一种很常见的控制算
  • C语言对寄存器的封装

    目录 1 封装总线和外设基地址 2 封装寄存器列表 3 修改寄存器的位操作的方法 把变量的某位清零 把变量的某几个连续位清零 对变量的某几位进行赋值 对变量的某位取反 1 封装总线和外设基地址 在编程上为了方便理解和记忆 xff0c 我们把
  • STM32——串口通信及实验

    目录 1 按照数据传送的方向 xff0c 分为 xff1a 2 按照通信方式 xff0c 分为 xff1a STM32串口通信基础 串口通信过程 UART xff08 USART xff09 框图 串口通信实验 编程要点 代码分析 通信接口
  • 【STM32】DMA原理,配置步骤超详细,一文搞懂DMA

    目录 DMA xff08 Direct Memory Access xff09 简介 DMA传输方式 DMA功能框图 DMA请求映像 DMA1控制器 DMA2控制器 通道 仲裁器 DMA主要特性 DMA处理 DMA数据配置 从哪里来到哪里去
  • [STM32学习]——一文搞懂I2C总线

    目录 I2C总线的概念 I2C最重要的功能包括 xff1a I2C的物理层 I2C主要特点 xff1a I2C的高阻态 I2C物理层总结 xff1a I2C的协议层 初始 xff08 空闲 xff09 状态 开始信号 xff1a 停止信号
  • STM32——ADC采集

    目录 ADC简介 ADC主要特征 ADC功能框图 ADC引脚 电压输入范围 通道选择 单次转换模式 连续转换模式 转换顺序 规则序列 注入序列 触发源 转换时间 中断 转换结束中断 模拟看门狗中断 DMA请求 代码讲解 宏定义 xff1a
  • STM32——MPU6050内部DMP固件移植,获取欧拉角

    MPU6050模块是什么东西 xff0c 我这里就不再赘述了 xff0c 围绕它可以做很多应用 xff0c 比如四翼飞行器 平衡车等等 当然要完全使用这块模块不是那么容易的 解释说明 其实我们主要是想通过MPU6050得到欧拉角和四元数 x
  • 树莓派---设置WIFI自动连接或者取消自动连接

    树莓派 设置WIFI自动连接或者取消自动连接 注意一 方案二 设置WIFI自动连接 2 1 远程连接 若树莓派本地操作则跳过 2 2 修改WIFI自动连接配置文件 三 取消WIFI自动连接 注意 系统 xff1a Ubuntu16 04 树
  • ROS——服务通信

    服务通信是ROS中一种及其常用的通信模式 xff0c 服务通信是基于请求响应模式的 xff0c 是一种应答机制 xff0c 也即一个节点A向另一个节点B发送请求 xff0c B接收处理请求并产生响应返回给A xff0c 比如如下场景 xff
  • ROS中的头文件和源文件

    目录 自定义头文件的调用 头文件 可执行文件 配置文件 自定义源文件的调用 头文件 源文件 可执行文件 配置文件 头文件与源文件相关配置 可执行文件配置 本文主要介绍ROS的C 43 43 实现 xff0c 如何使用头文件和源文件的方式封装
  • 一文搞懂——软件模拟SPI

    关于stm32通信协议 xff1a 软件模拟SPI 软件模拟I2C的总结 xff08 fishing 8 xff09 To be a fisher的博客 CSDN博客 stm32 软件spi 发现一篇写的软件模拟SPI的比较容易理解的博客
  • RT-Thread启动流程

    芯片启动到main函数之前的运行过程 不论是否有RTOS xff0c 芯片的启动过程是一致的 xff0c 均是要从复位向量处取得上电复位后要执行的第一个语句 xff0c 接下来进行系统时钟初始化等工作 xff0c 随后跳转到main处 寻找
  • FreeRTOS信号量

    前面介绍过 xff0c 队列 xff08 queue xff09 可以用于传输数据 xff1a 在任务之间 xff0c 任务和中断之间 消息队列用于传输多个数据 xff0c 但是有时候我们只需要传递一个状态 xff0c 这个状态值需要用一个
  • FreeRTOS优先级翻转

    优先级翻转 优先级翻转 xff1a 高优先级的任务反而慢执行 xff0c 低优先级的任务反而优先执行 优先级翻转在抢占式内核中是非常常见的 xff0c 但是在实时操作系统中是不允许出现优先级翻转的 xff0c 因为优先级翻转会破坏任务的预期