老男孩读PCIe之五:TLP结构

2023-05-16

来源: http://www.ssdfans.com/?p=3683


无论Request TLP,还是作为回应的Completion TLP,它们模样都差不多:

图5.1

TLP主要由三部分组成:Header,Data和CRC。TLP都是生于发送端的事务层(Transaction Layer),终于接收端的事务层。

每个TLP都有一个Header,跟动物一样,没有头就活不了,所以TLP可以没手没脚,但不能没有头。事务层根据上层请求内容,生成TLP Header。Header内容包括发送者的相关信息、目标地址(该TLP要发给谁)、TLP类型(前面提到的诸如Memory read,Memory Write之类的)、数据长度(如果有的话)等等。

Data Payload域,用以放有效载荷数据。该域不是必须的,因为并不是每个TLP都必须携带数据的,比如Memory Read TLP,它只是一个请求,数据是由目标设备通过Completion TLP返回的。后面我们会整理哪些TLP需要携带数据,哪些TLP不带数据的。前面也提到,一个TLP最大载重是4KB,数据长度大于4KB的话,就需要分几个TLP传输。

ECRC(End to End CRC)域,它对之前的Header和Data(如果有的话)生成一个CRC,在接收端然后根据收到的TLP,重新生成Header和Data(如果有的话)的CRC,和收到的CRC比较,一样则说明数据在传输过程中没有出错,否则就有错。它也是可选的,可以设置不加CRC。

图5.2

Data域和CRC域没有什么好说的,有花头的是Header域,我们要深入其中看看。

一个Header大小可以是3DW,也可以是4DW。以4DW的Header为例,TLP的Header长下面样子:

图5.3

红色区域为所有TLP Header公共部分,所有Header都有这些;其它则是跟具体的TLP相关。

稍微解释一下:

Fmt:Format, 表明该TLP是否带有数据,Header是3DW还是4DW;

Type:TLP类型,上一节提到的,Memory Read, Memory Write, Configuration Read, Configuration Write, Message和Completion,等等;

R: Reserved,为0;

TC: Traffic Class,TLP也分三六九等,优先级高的先得到服务。这里是3比特,说明可以分为8个等级,0-7,TC默认是0,数字越大,优先级越高;

Attr: Attrbiute, 属性,前后共三个bit,先不说;

TH: TLP Processing Hints,先不说;

TD: TLP Digest,之前说ECRC可选,如果这个这个bit置起来,说明该TLP包含ECRC,接收端应该做CRC校验;

EP: Poisoned data, 有毒的数据,远离,哈哈;

AT: Address Type,地址种类,先不说;

Length: Payload数据长度,10个bit,最大1024,单位DW,所以TLP最大数据长度是4KB; 该长度总是DW的整数倍,如果TLP的数据不是DW的整数倍(不是4Byte的整数倍),则需要用到下面两个域:

Last DW BE 和 1st DW BE。

我觉得,到目前为止,对于Header,我们只需知道它大概有什么内容,没有必要记住每个域是什么。

这里重点讲讲Fmt和Type,看看不同的TLP(精简版的,Native PCIe设备所有)其Fmt和Type应该怎样编码

Table 5.1

从上可以看出,Configuration和Completion 的TLP(以C打头的TLP), 其Header大小总是3字节; Message TLP的Header总是4字节;而Memory相关的TLP取决于地址空间的大小,地址空间小于4GB的,Header大小为3DW,大于4GB的,Header大小则为4DW。

上面介绍了几个TLP Header的通用部分,下面分别介绍具体TLP的Header。

Memory TLP

有两个重要的东西在前面没有提到,那就是TLP的源和目标,即该TLP是哪里产生的,它要到哪里去,它们都包含在Header里面的。因为不同的TLP类型,寻址方式不同,因此要具体TLP具体来看这两个东西。

图5.4

对一个PCIe设备来说,它开放给Host访问的设备空间首先会映射到Host的内存空间,Host如果想访问设备的某个空间,TLP Header当中的地址应该设置为该访问空间在Host内存的映射地址。如果Host内存空间小于4GB,则Memory读写TLP的Header大小为3DW,大于4GB,则为4DW。那是因为,对4GB内存空间,32bit的地址用1DW就可以表示,该地址位于Byte8-11;而4GB以上的内存空间,需要2DW表示地址,该地址位于Byte8-15。

该TLP经过Switch的时候,Switch会根据地址信息,把该TLP转发到目标设备。之所以能唯一的找到目标设备,那是因为不同的Endpoint设备空间会映射到Host内存空间的不同位置。

关于TLP路由,后面还会专门讲。

Memory TLP的目标是通过内存地址告知的,而源是通过"Requester ID"告知。每个设备在PCIe系统中都有唯一的ID,该ID由总线(Bus)、设备(Device)、功能(Function)三者唯一确定。这个后面也会专门讲,这里只需知道一个PCIe组成有唯一的ID,不管是RC, Switch还是Endpoint。

Configuration TLP

Endpoint和Switch的配置(Configuration)格式不一样,分别为Type 0和 Type 1来表示。配置可以认为是一个Endpoint或者Switch的一个标准空间,这段空间在初始化时也需要映射到Host的内存空间。与设备的其他空间不同,该空间是标准化的,即不管哪个厂家生产的设备,都需要有这么段空间,而且哪个地方放什么东西,都是协议规定好的,Host按协议访问这部分空间。由于每个设备ID唯一,而其Configuration又是固定好的,因此,Host访问PCIe设备的配置空间,只需指定目标设备的ID就可以了,不需要内存地址。

下面是访问Endpoint的配置空间的TLP Header (Type 0):

图5.5

Bus Number + Device + Function就唯一决定了目标设备; Ext Reg Number + Register Number相当于配置空间的偏移。找到了设备,然后指定了配置空间的偏移,就能找到具体想访问的配置空间的某个位置。

Message TLP

Message TLP用以传输中断、错误、电源管理等信息,取代PCI时代的边带信号传输。Message TLP的Header 大小总是4DW。

图5.6

Message Code来指定该Message的类型,具体如下:

图5.7

不同的Message Code,最后两个DW的意义也不同,这里不展开。

Completion TLP

有non-posted request TLP,才有Completion TLP。有因才有果。前面看到,Requester 的TLP当中都有Requester ID和Tag,来告诉接收者发起者是谁。那么响应者的目标地址就很简单,照抄发起者的源地址就可以了。因此,Completion TLP的Header如下:

图5.8

Completion TLP,一方面,可以返回请求者的数据,比如作为Memory或者Configuration Read的响应;另一方面,还可以返回该事务(Transaction)的状态,因此,在Completion TLP的Header里面有一个Completion Status,用以返回事务状态:

图5.9

09/21/2017 Thu

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

老男孩读PCIe之五:TLP结构 的相关文章

  • windows PCIe 工具: TeleScan

    TeleScan PE for Windows 用户可以通过TeleScan PE来扫描系统中的PCI PCIe设备 xff0c 并提供了读写其配置空间中的寄存器的功能 download Teledyne LeCroy PCI Expres
  • pcie的rc模式和ep模式有什么区别?

    pcie的rc模式和ep模式有什么区别 xff1f RC PCI Express root complex 在RC模式时 xff0c 使用PCIE类型1配置头 xff1b EP endpoint device 工作方式 在EP模式时 xff
  • PCIe MSI-X 中断 设置 过程

    主机侧初始化 msi span class token operator span map span class token operator 61 span span class token operator lt span span c
  • PCIe总线引脚定义

    然后看一下PCI E的接口定义 这就是显卡插口前面的那段短的金手指 xff0c 就是这段 xff1a 这一段负责供电 SMBus和感知设备是否插上 xff0c 对于数据的传输作用不大 xff0c 所以不用深究 用浅绿色标出来的是检测插槽上设
  • FPGA实现MPEG2视频压缩PCIe传输 提供软硬件工程源码和技术支持

    目录 1 前言2 MPEG2视频压缩实现3 我已有的FPGA图像视频编解码方案4 我已有的PCIE方案5 MPEG2视频压缩PCIE传输设计方案FPGA硬件设计软件设计 6 Vivado工程详解7 Linux下的XDMA驱动安装8 上板调试
  • kvaser pcie can 在ros中使用socketcan开发

    kvaser pcie can 在ros中使用socketcan开发 0 系统配置 Ubuntu 16 04 6 LTS Linux version 4 15 0 45 generic 1 官网下载地址 https www kvaser c
  • LabVIEW FPGA PCIe开发讲解-实战篇:实验61:PCIe DMA+8位ADC(模拟数据采集卡)

    1 实验内容 现在很多电脑PC或者工控机主板上面都集成了PCIe插座 可以直接插入PCIe板卡 优点是卡槽标准 插拔简单 传输速度极快 对于高速采集测试测量领域 PCIe用途非常广泛 最大极限带宽可以到6 6GB s 这个速度可以直接用来做
  • 【PCIe】1: PCIe 硬件时序初始化过程

    目录 1 前言 2 PCIe理论带宽 3 PCIe连接器引脚定义 4 关键信号描述 4 1 PERST 4 2 REFCLK 和REFCLK 信号
  • Linux PCIe驱动框架分析(第三章)

    目录 项目背景 1 概述 2 流程分析 2 1 Device Tree 2 2 probe流程 2 3 中断处理 2 4 总结 项目背景 Kernel版本 4 14 ARM64处理器 使用工具 Source Insight 3 5 Visi
  • PCI设备和PCI桥的配置空间(header_type0、header_type1)和配置命令(type0、type1)详解

    1 PCI典型拓扑 2 type0和type1 名称 含义 Bus Number 设备所在总线号 Device Number 设备分配到的设备号 Function Number 功能号 有的设备是支持多个功能的 最多8种功能 Registe
  • CXL 2.0 Device配置空间寄存器组成

    目录 1 配置空间 1 1 PCI Power Management Capability Structure 1 2 PCI Express Capability Structure 2 扩展配置空间 2 1 Virtual Channe
  • PCIE专题学习——1.0

    PCIE基础概念 一 1 PCIe的概念 PCIe是一种全双工 差分 端对端 串行告诉接口协议 PCI是并行处理的机制 差分可以提高传输的稳定性 全双工意味着发送端在发送的同时 也可以接收 问题在于串行会比并行处理快吗 当然不一定 这和系统
  • 【PCIe】5: PCIe DBI (Date Bus Interface)

    目录 1 DBI 2 CDM 3 ELBI 3 1 EP 的排布 3 2 RC对应空间排布 1 DBI DBI Data Bus Interface You can use this interface to locally access
  • PCIe专题学习——2.1

    之前我们对PCIe的一些基础概念做了一个宏观的介绍 了解了PCIe是一种封装分层协议 packet based layered protocol 主要包括事务层 Transaction layer 数据链路层 Data link layer
  • PCIe专题学习——2.4

    之前我们讲了对PCIe的一些基础概念做了一个宏观的介绍 了解了PCIe是一种封装分层协议 packet based layered protocol 主要包括事务层 Transaction layer 数据链路层 Data link lay
  • PCIe专题学习——4.1(物理层数据流解析)

    之前我们讲了对PCIe的一些基础概念作了一个宏观的介绍 了解了PCIe是一种封装分层协议 packet based layered protocol 主要包括事务层 Transaction layer 数据链路层 Data link lay
  • PCIe架构下memory空间、IO空间、PCIe配置空间简介

    转载自 PCIe架构下memory空间 IO空间 PCIe配置空间简介 1 4种空间迷魂阵 PCIe架构下定义了4种地址空间 Memory空间 IO空间 配置空间和message空间 我们先看一下PCIe spec关于这四种空间的定义 1
  • 深入PCI与PCIe之一:硬件篇

    PCI总线和设备树是X86硬件体系内很重要的组成部分 几乎所有的外围硬件都以这样或那样的形式连接到PCI设备树上 虽然Intel为了方便各种IP的接入而提出IOSF总线 但是其主体接口 primary interface 还依然是PCIe形
  • PCIe专题学习——3.2(数据链路层Ack/Nak机制解析)

    之前我们讲了对PCIe的一些基础概念作了一个宏观的介绍 了解了PCIe是一种封装分层协议 packet based layered protocol 主要包括事务层 Transaction layer 数据链路层 Data link lay
  • macOS DriverKit:制作 PCI dext 来替换内置驱动程序

    我正在尝试在 DriverKit 中编写一个用户空间 PCI 驱动程序 用于教育 研究目的 我找到了一个来自 WorthDoingBadly 的示例其中包含 PCI 设备 dext 的样板代码 我已删除了漏洞利用代码 我已将其修改为通过以下

随机推荐

  • C# 内存与性能优化

    C 内存与性能优化 https www jianshu com p d56f79d83ebd 前两周分享了资源配置与资源管理 xff0c 今天分享一种特殊的资源脚本数据 在Unity项目中 xff0c 我们通常使用C 编写脚本 xff0c
  • Gazebo仿真错误与技巧

    xff08 1 xff09 创建的环境不能保存 打开gazebo创建环境以后 xff0c 不能保存 xff0c 在打开是需要加权限 xff08 sudo xff09 xff0c 详细说明 如果是build可以先保存成模型 xff0c 然后再
  • 《Android入门之旅》

    因为本人在公司任职Java和JavaWeb相关开发工作 EXTJS和JQUERY近年来在网站中使用广泛 EXT江湖对我帮助很大 该书由浅入深地解析了Ext框架的方方面面 xff0c 包括JS基础 Ext的DOM和CSS封装 内置对象的扩展
  • 转发——从搭建小系统到架构分布式

    从搭建小系统到架构分布式 从搭建小系统到架构分布式 SpringBoot是目前Spring技术体系中炙手可热的框架之一 既可用于构建业务复杂的企业应用系统 xff0c 也可以开发高性能和高吞吐量的互联网应用 Spring Boot 框架降低
  • 2018-8-30华为机试第三题

    一个很明显的递归问题 package cn csu ksh import java util ArrayList import java util List import java util Scanner public class Mai
  • 海康威视web3.2开发包开发使用说明

    首言 xff1a 通过海康威视的最新web开发包工具进行js调用引入至vue项目中 xff0c 实现监控设备的对接 xff0c 监控功能的实现 3 2无插件js库同时支持插件安装的模式 目录 首言 xff1a 一 海康威视开发平台 xff1
  • 游戏的navmesh 与rvo动态避障算法(1)

    目前很多手游中如果需要寻路 xff0c 很多时候复杂地形都是需要用到navmesh xff0c 而比较常用的navmesh 系统 xff1a 1 astarpathfinding xff1a 一个老外开发的寻路插件 xff0c 内置有很多寻
  • Python3 指数函数 | numpy.power() math.pow() numpy.exp2() a**b

    对数函数用法 单纯求一个数的指数函数 xff0c 直接用a b比较好 xff1f 2 3 2的三次方 使用pow x y pow 有两种 xff0c 一种是python内置函数 xff0c 一种是math pow 使用python内置函数调
  • SVO2.0

    rpg svo pro open即svo2 0版本在上一年开源了 xff0c 对svo2 0接触了有一小段时间了 xff0c 感觉代码功能和一些函数实现等相比svo1 0版本有区别 xff0c 所以准备把这块好好总结下 xff0c 争取白话
  • ROS CMakeLists.txt中catkin_package和INCLUDE_DIRS的区别

    CMakeLists txt中 catkin package INCLUDE DIRS include 这里代表的是catkin的构建选项 xff0c INCLUDE DIRS表示将使用INCLUDE DIRS后面的内部目录include
  • 利用ROS框架搭建云平台提供机器人服务

    我们要怎么做呢 我们在云平台我们识别物体之后输出的是全局的二维码坐标 x y z 我们接下来要做两件事情 一种是使用云端的服务 xff08 在ROS中的表现形式是云平台提供的action xff09 第二种是请求云端的数据 xff08 可以
  • 虚拟现实技术vr可以用来干什么?虚拟现实技术vr有什么特征

    科技行业的不断蓬勃发展 xff0c 每天会出现一些新的科技产品 xff0c 例如现在很火的虚拟现实技术vr xff0c 虚拟现实技术用的领域很多 xff0c 就拿游戏行业来说 xff0c 玩家可以通过vr眼镜 vr手柄等体验vr游戏 xff
  • vr直播是如何实现的?vr直播都有哪些优势

    科技改变了我们的生活方式 xff0c 提起科技相信大家对这个直播行业恐怕都不陌生 xff0c 最近直播行业也玩出来新的花样 xff0c 引进了vr技术 xff0c 摇身一变 xff0c 变成了vr直播 xff0c 很多朋友不太理解vr直播是
  • Python归并排序

    归并排序 数据科学家每天都在处理算法 然而 xff0c 数据科学学科作为一个整体已经发展成为一个不涉及复杂算法实现的角色 尽管如此 xff0c 从业者仍然可以从建立对算法的理解和知识库中受益 在本文中 xff0c 对排序算法归并排序进行了介
  • 平衡车PID调节总结

    https blog csdn net a568713197 article details 82845959
  • FreeRTOS详解三

  • Invalid bound statement (not found)出现的原因和解决方法

    解决错误的步骤 出现了什么错误可能导致的原因解决办法 出现了什么错误 错误截图 xff1a BindingException 数据绑定异常 not found 找不到 org apache ibatis binding BindingExc
  • TI Processor SDK 如何生成例程

    TI现在新的SDK都叫Process SDK了 例程要自己生成 这样好多人都说自己找不到例程在哪里 其实就是生成这一步搞不定 我以AM5728为例子说 先打开到pdk的目录 编辑箭头所示文件 安装在默认路径Cpan的可以忽略这一步 否则要改
  • PCIE BAR空间理解

    PCIE应用程序编程 xff0c 首先就要理清PCIE BAR空间到底说的是什么 在PCIE配置空间里 xff0c 0x10开始后面有6个32位的BAR寄存器 xff0c BAR寄存器中存储的数据是表示PCIE设备在PCIE地址空间中的基地
  • 老男孩读PCIe之五:TLP结构

    来源 xff1a http www ssdfans com p 61 3683 无论Request TLP xff0c 还是作为回应的Completion TLP xff0c 它们模样都差不多 xff1a 图5 1 TLP主要由三部分组成