分类器对未见过类别(unseen category)的识别问题

2023-05-16

这篇文章比较旧了,其实是讨论开集识别问题的(Open-Set Problem),可以参考本人的新文章:真实世界中的开集识别问题(Open-Set Recognition Problem)

未见过类别

    未见过类别(unseen category)或者叫不知道类别(unknown category)。简单来说,如我们定义类别{苹果,香蕉} 且其数据集为D,那么定义一个二分类器C,将D分割为训练集和测试集,那么训练出的分类器只能区分两个类别。假设我们拥有数据Dx,其中拥有的分类为{小狗,小猫},这个时候将Dx混入D的测试集,二分类器C如何分类Dx中的数据?这时我们将Dx包含的数据类别叫未见过类别。也就是分类器从未见过的类别,即该类别未在训练集中定义,区别于未见过的数据。

    更形式化的定义为:对于学习算法F,其只在训练集中训练,且训练集包含的定义类别数为K,测试集定义类别数为N,且测试集中至少有一个类别是训练集中未定义的类别,我们把训练集与测试集定义类别的差集定义为未见过类别。

    一个简单的例子是:我们训练一个mnist分类器,有10个类别分别是{0,1,2,... ,9},如果我们给这个mnist分类器猫的图片,它会分类为什么?这个猫的图片对于mnist分类器就是未见过类别。

 

测试域分类完全性

 

    即:存在学习算法F,使任意的概念C在训练域(空间)中是PAC可学习的,且测试域的任意概念X也属于训练域,那么对于测试域,算法F在其域内是分类完全的。

    对分类器算法而言,测试域分类完全性指分类器的分类数大于或等于测试域中类别数量和测试域中类别包含于分类器类别,且分类器的所有类别概念需要满足训练域中PAC可学习。以下如不特别说明分类器的所有类别概念都满足训练域的PAC可学习。

    如:分类器类别{苹果,香蕉,西瓜},测试域中类别{苹果,香蕉,西瓜},分类完全

          分类器类别{苹果,香蕉,西瓜},测试域中类别{苹果,西瓜},分类完全

          分类器类别{苹果,香蕉,西瓜},测试域中类别{苹果,西瓜,李子},分类不完全

          分类器类别{苹果,香蕉},测试域中类别{苹果,西瓜,李子},分类不完全

    真实应用中的例子:

       实际上,在真实世界中类别数量是非常大的,如在图像分类中,分类可以成千上万,从大分类(水果,蔬菜等)到具体分类(苹果,香蕉),因为从属关系,具体的分类搞定了,大分类就搞定了,所以我们一般直接考虑具体分类问题,如在ImageNet图像识别竞赛中分类数大约为1000,如果我们将测试域设置为仅仅在ImageNet竞赛数据这个域中,训练分类器的类别为1000(类别一一对应)那么分类是完全的,如果将测试域设定为真实世界,那么实际上1000个分类相对于真实世界非常小,也就是分类不完全的。

    在这里我们可以得出一个结论:如果分类器在测试域中不是分类完全的,那么分类器在测试域中未定义的类别,如果被强制分类那么一定会被错分。

    我们知道人对于任意概念如果知道其类别那么将其分类,如果不知道其类别那么分类为"未见过类别"。所以我们引申出一个问题,对于算法F,任意的概念C在训练域中是PAC可学习的,且测试域的某些概念X不属于训练域,也就是训练域中没有关于概念X的数据,在训练域中训练出的算法F如何将概念X分类为"未见过类别"?

分类与域描述

   

    如上图所示,我们可以明显看到分类(判别)算法比数据域描述(data domain description)有更松弛的界(boundary),即分类只需要划类间的界限,只要分类算法达到小的分类误差就可以了,而没有具体的描述类别的边界,所以在未见过类别需要区别的时候,分类算法只能决策到已知类别(在低概率拒绝分类的决策分类算法仍然有较大的问题),所以很容易被愚弄[8],而域描述恰恰因为描述了类别的边界,所以能在界之内的数据点分类为已知类别标记,界之外的数据被分类为未见过类别。(不正式的说,在标记类别趋向于无穷大的时候分类算法的界收敛到域描述的界)。

显式优化类间与类内距离

    对于分类任务即是优化一个函数F(x)使得代价函数最小,如下Cross Entropy 代价函数

   

     这样得到的决策面就如上图1,2。

     为了得到类似于上图域描述的效果,我们可以显式优化内间距离和类内距离,如Contrast Loss[9-11]

    

    或者Triple Loss[12]

   

    这是人脸识别面对开集问题(Open-Set)所提出的算法,在人脸识别领域广泛使用,而人脸识别更类似人类大脑识别,其更像是一个特征搜索问题而非决策问题,所以很多人脸识别算法能够解决未见过类别的问题,不管是1:1的对比还1:N的搜索。

判别模型与生成模型

    判别模型(discriminative model),判别模型是直接学习p(y|x),即输入输出映射,我们通常的分类算法就是判别模型,如SVM,LR,NN...;

    生成模型(generative model)是对p(x,y)进行学习,即学习p(y|x)p(x),最后p(x,y)=p(y|x)p(x),可以认为p(y|x)为判别模型给出的后验概率,而p(x)为先验概率(也可以叫上下文或者熟悉度,比如是否是熟悉的输入,不熟悉[即不属于训练数据分布的数据] 有较小的p(x)值),而p(x,y)可以理解为给定 x y 的综合置信度,所以生成模型更不容易像判别模型那样将未见过类别分类为错误类别[8]。

 

参考:

    1. 周志华,机器学习

    2. Data domain description using support vectors

    3.Support vector domain description

    4.One Class SVM, SVDD(Support Vector Domain Description)

    5.Domain described support vector classifier for multi-classification problems

    6.Combining one-class classifiers

    7. Novelty and Outlier Detection 

    8. Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images 

    9. Deep learning face representation by joint identification-verification

    10. Deeply learned face representations are sparse, selective, and robust

    11. Deepid3: Face recognition with very deep neural networks

    12. Facenet: A unified embedding for face recognition and clustering

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

分类器对未见过类别(unseen category)的识别问题 的相关文章

  • 超声波测距的误差分析

    不管在液体还是气体中影响超声波测距精度的都有以下几个因素 一 气介状态下影响超声波测距精度的因素 xff1a 1 压力 不同压力的环境声速是会变化的 xff0c 一般来说压力越大 xff0c 声速越大 xff0c 压力越小 xff0c 声速
  • HAL库的串口基础学习(包含串口接收不定长数据的实现)

    HAL库的串口基础学习 xff08 1 xff09 HAL库有一个特点就是对于许多外设的初始化以及功能操作 xff0c 都提供有一个weak版本的函数 xff0c 这是充分的展现出库名字的含义 xff08 Hardware Abstract
  • 解决头文件相互包含问题的方法

    所谓超前引用是指一个类型在定义之前就被用来定义变量和声明函数 一般情况下 xff0c C C 43 43 要求所有的类型必须在使用前被定义 xff0c 但是在一些特殊情况下 xff0c 这种要求无法满足 xff0c 例如 xff0c 在类C
  • 101. 对称二叉树

    101 对称二叉树 给定一个二叉树 xff0c 检查它是否是镜像对称的 例如 xff0c 二叉树 1 2 2 3 4 4 3 是对称的 1 2 2 3 4 4 3 但是下面这个 1 2 2 null 3 null 3 则不是镜像对称的 1
  • code

    class Solution public void push int node stack1 push node int pop int temp while stack2 empty while stack1 empty temp 61
  • c++ unordered_map

    include lt iostream gt include lt unordered map gt int main simple comparison demo std unordered map lt int char gt exp
  • opencv 打开网络摄像头

    闲着没事从同学那里找到了个openwrt xff0c 突然间想起来OPENCV可以很轻松的打开自带的摄像头 xff0c 刚开始学习OPENCV 打开过若干次笔记本的摄像头 xff0c OPENCV能否打开网络摄像头呢 xff1f 在百度上搜
  • opencv 识别网球 ,或者绿色的小球 输出重心坐标

    void image process IplImage image int iLowH 61 26 int iHighH 61 69 int iLowS 61 42 int iHighS 61 206 int iLowV 61 0 int
  • linux 下面如何安装Eigen

    linux 下面如何进行安装 Eigen 1 安装 xff1a sudo apt get install libeigen3 dev 2 调整 xff0c 默认安装路径是 xff1a usr include eigen3 cd usr in
  • matlab 怎么把二维数组画出三维的图像出来

    最近要用到matlab 来进行可视化显示以下数据 xff0c 把数据导入matlab 之后 是二维数组的数据 xff0c 想以数组的x和y 分别为x 和y 轴 xff0c 然后以数组相对应的数据为z 轴 xff0c 然后进行画图显示 cle
  • C++ 怎么批量读取多个文件

    C 43 43 怎么批量读取多个文件 char szName 100 61 39 0 39 sprintf szName 34 training wall clouser wall d pcd 34 j num wall 格式化输出文件名
  • ros 下面同步相机和IMU 两个topic

    This file is used for collecting data fromm imu and camera at the same time One camera and one imu include lt ros ros h
  • 线程和进程的区别与联系以及单线程多进程与单进程多线程的区别

    线程和进程 概念 进程 xff08 process xff09 xff1a 是指具有已一定功能的独立程序 xff0c 是系统资源分配的基本单位 xff0c 在内存中有其完备的数据空间和代码空间 xff0c 拥有完整的虚拟空间地址 一个进程所
  • QgraphicsScene类

    概述 QgraphicsScene类为管理大量的2D图形item提供了一个管理界面 xff0c 做为item的容器 xff0c 它配合使用QgraphicsView使用来观察items 例如线 xff0c 矩形 xff0c 文本或者自定义的
  • 最好的 Curl 学习指南,强烈建议收藏!

    来自 xff1a 阮一峰的网络日志 链接 xff1a http www ruanyifeng com blog 2019 09 curl reference html 简介 curl 是常用的命令行工具 xff0c 用来请求 Web 服务器
  • TCP超时与重传

    1 TCP重传 A 基于时间信息 设置RTO xff1a tcp协议对超时报文的处理响应比较剧烈 xff0c 如 xff1a i 基于拥塞控制机制 xff0c 减小发送窗口大小 限窗 xff1b ii 当一个重传报文段被再次重传时 xff0
  • tcpdump参数用法详解

    一直在linux下开发的人一定会用到tcpdump xff0c 下面就是关于tcpdump的使用方法说明 1 tcpdump的选项 a 将网络地址和广播地址转变成名字 xff1b d 将匹配信息包的代码以人们能够理解的汇编格式给出 xff1
  • 学习图像处理知识---EmguCV3.4图像ArUco Marker Detection--DetectorParameters 结构体

    好久没有更新了图像处理 ArUco Marker Detection 种汉明 海明 码的格子图 用于相机 相机姿态估计之标记检测 在Emgu CV Aruco Namespace 命名空间中 重要的检测结构体DetectorParamete
  • 仿真导航中2d Nav Goal后小车不能到达目标点

    古月老师的课程我在进行仿真导航过程中 xff0c 遇到了小车不能到达我在rviz中指定的2d Nav Goal的目标点 xff0c 并且反复震荡的问题 解决方法如下 xff1a 模型参数里左右轮参数搞反了 xff0c 互换一下即可
  • 超声波传感器测距原理

    超声波 ultrasonic waves xff1a 人类耳朵能听到的声波频率为20HZ xff5e 20KHz 当声波的振动频率大于20KHz或小于20Hz时 xff0c 我们便听不见了 因此 xff0c 我们把频率高于20000赫兹的声

随机推荐