STM32学习笔记———几种简单传感器的数据读取

2023-05-16

引言

传感器正如计算机的眼睛。从广义上讲,传感器就是一种能感知外界信息,并将这些信息按照一定规律转换成可用的电信号或其他形式的输出信号的装置,达到对信息的存储,传输,控制的目的。本文着重分析如何通过单片机分析电信号时序图实现对传感器的控制与传感器采集信息的读取

一.HC-SR04超声波测距模块

VCC引脚:接5V电源

GND引脚:接地线

TRIG:触发信号引脚,单片机给超声波模块一个信号,超声波信号就会工作

ECHO引脚:回声信号 引脚,当超声波模块已经测距成功后,通过该引脚告诉单片机当前超声波传播距离

从时序图可以分析出,未开始工作时,触发信号与输出回响信号均处于低电平,随后触发信号引脚发出一段时间为10微秒的高电平后拉低,表示通信开始,随后模块内部将发出超声播脉冲,当回响信号引脚接收到超声波脉冲后,,将输出一段时间的高电平,通过检测高电平时间既可以得出检测距离三.距离计算

超声波在空气中传播的速度约为三百四十米每秒,超声波模块测距误差约为3mm,于此可得计算公式如下:

该公式表明,该模块的最短测距时间单位为9微秒,距离单位为3mm

四.代码

二.DHT11温湿度传感器

一.模块简介

二.时序图

1.

DATA引脚用于微处理器与DHT11之间的通讯与同步,采用单总线数据格式,一次通信时间4ms左右,数据分为整数部分和小数部分,具体格式在下面说明。

一次完整的数据传输为40bit,高位先出。

数据格式:

8bit湿度整数数据+8bit湿度小数数据+8bit温度整数数据+8bit温度小数数据+8bit校验和

数据传输正确时校验和数据等于”8bit湿度整数数据,8bit湿度小数数据,8bit温度整数数据,8bit温度小数数据”之和的末八位

  1. 通信过程

通信开始

数据判断

三.具体代码

三.红外

一.红外线

红外线是波长介于微波与可见光之间的电磁波,波长在760纳米到1毫米之间,是波形比红光长的非可见光。自然界中一切物体都在不断辐射红外线。当然,虽然都是在辐射红外线,但不同的物体辐射的强度是不一样的,正是利用了这一点将红外线运用到实际开发之中

1.红外发射管

红外发射管很常用,在我们的遥控器上都可以看到,它类似发光二极管,但是它发射出来的是红外光,是我们肉眼所看不到的。我们学过发光二极管的亮度会随着电流的增大而增加,同样的道理,红外发射管发射红外线的强度也会随着电流的增大而增强

2.红外接收管

红外接收管内部是一个具有红外光敏感特征的 PN 节,属于光敏二极管,但是它只对红外光有反应。无红外光时,光敏管不导通,有红外光时,光敏管导通形成光电流,并且在一定范围内电流随着红外光的强度的增强而增大

二.红外遥控技术

远程遥控技术又称为遥控技术,是指实现对被控目标的遥远控制,在工业控制、航空航天、家电领域应用广泛。

红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机和手机系统中。

随着家用电器、视听产品的普及,红外线遥控器已被广泛使用在各种类型的家电产品上(如遥控开关、智能开关等)。其具有体积小、抗干扰能力强、功耗低、功能强、成本低等特点,在工业设备中也得到广泛应用。一般而言,一个通用的红外遥控系统由发射和接收两大部分组成

2.基本原理

通常红外遥控为了提高抗干扰性能和降低电源消耗,红外遥控器常用载波的方式传送二进制编码,常用的载波频率为38KHz,这是由发射端所使用的455KHz晶振来决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455KHz÷12≈37.9KHz≈38KHz。也有一些遥控系统采用36KHz、40 KHz、56 KHz等,一般由发射端晶振的振荡频率来决定。所以,通常的红外遥控器是将遥控信号(二进制脉冲码)调制在38KHz的载波上,经缓冲放大后送至红外发光二极管,转化为红外信号发射出去的。

二进制脉冲码的形式有多种,其中最为常用的是PWM码(脉冲宽度调制码)和PPM码(脉冲位置调制码,脉冲串之间的时间间隔来实现信号调制)。如果要开发红外接收设备,一定要知道红外遥控器的编码方式和载波频率,我们才可以选取一体化红外接收头和制定解码方案

红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送后置放大器。

发射端

一般由指令键(或操作杆)、指令编码系统、调制电路、驱动电路、发射电路等几部分组成。当按下指令键或推动操作杆时,指令编码电路产生所需的指令编码信号,指令编码信号对载波进行调制,再由驱动电路进行功率放大后由发射电路向外发射经调制定的指令编码信号。

接收端

一般由接收电路、放大电路、调制电路、指令译码电路、驱动电路、执行电路(机构)等几部分组成。接收电路将发射器发出的已调制的编码指令信号接收下来,并进行放大后送解调电路,解调电路将已调制的指令编码信号解调出来,即还原为编码信号。指令译码器将编码指令信号进行译码,最后由驱动电路来驱动执行电路实现各种指令的操作控制。

3、编码格式

现有的红外遥控包括两种方式:PWM(脉冲宽度调制)和PPM(脉冲位置调制)。

  两种形式编码的代表分别为NEC 和PHILIPS 的RC-5、RC-6 以及将来的RC-7。

  PWM(脉冲宽度调制):以发射红外载波的占空比代表“0”和“1”。为了节省能量,一般情况下,发射红外载波的时间固定,通过改变不发射载波的时间来改变占空比。例如常用的电视遥控器,使用NEC upd6121,其“0”为载波发射0.56ms,不发射0.56ms;其“1”为载波发射0.56ms,不发射1.68ms;此外,为了解码的方便,还有引导码,upd6121 的引导码为载波发射9ms,不发射4.5ms。upd6121 总共的编码长度为108ms。

  但并不是所有的编码器都是如此,比如TOSHIBA 的TC9012,其引导码为载波发射4.5ms,不发射4.5ms,其“0”为载波发射0.52ms,不发射0.52ms,其“1”为载波发射0.52ms,不发射1.04ms。

  PPM(脉冲位置调制):以发射载波的位置表示“0”和“1”。从发射载波到不发射载波为“0”,从不发射载波到发射载波为“1”。其发射载波和不发射载波的时间相同,都为0.68ms,也就是每位的时间是固定的。

  通过以上对编码的分析,可以得出以某种固定格式的“0”和“1”去学习红外,是很有可能不成功的。即市面上所宣传的可以学习64 位、128 位必然是不可靠的。

  另外,由于空调的状态远多于电视、音像,并且没有一个标准,所以各厂家都按自己的格式去做一个,造成差异更大。比如:美的的遥控器采用PWM 编码,码长120ms 左右;新科的遥控器也采用PWM 编码,码长500ms 左右。如此大的差异,如果按“位”的概念来讲,应该是多少位呢?64?128?显然都不可能包含如此长短不一的编码。

对于电视、音响等,一般使用专用的遥控芯片,比nec,philips,toshiba,sanyo,mitsubish,pana sonic 的芯片,其编码格式固定,一个键只有一个编码,学习比较容易。

  而空调不一样,各家空调厂商都是按自己的要求用cpu 做遥控芯片,编码形式就有很多种。比如可能没有引导码(电视音响类都有)、校验方式取累加和(电视音响类一般取反码)等。因为空调的状态多,必须一次发送完毕,有制冷、温度、风速、自动、定时、加湿、制热等,所以编码很长,并且同一个按键,在不同状态下发送的编码不一样,造成学习上的困难。

红外遥控器的编码格式通常有两种格式:NEC 和RC5。

4、NEC协议

1.NEC 格式的特征:

● 使用38 kHz 载波频率

● 引导码间隔是9 ms + 4.5 ms

● 使用16 位客户代码

● 使用8 位数据代码和8 位取反的数据代码

2.NEC时序图

*码+反码=225

三.NEC协议具体代码

由于红外数据的随机产生,一般需要把红外接收函数放在外部中断函数中,外部中断设置为下降沿触发,表示开始接收到红外线数据

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

STM32学习笔记———几种简单传感器的数据读取 的相关文章

  • LayUI项目之我的会议(送审以及排座)

    目录 一 xff0c 会议排座 1 前台编码 调试后的jsp代码 2 后台编码 1 图片工具类 2 js代码 3 SQL语句编写 4 子控制器 5 dao方法 三 图片处理 图片处理类 前台代码 后台接收 三 xff0c 会议送审 1 前台
  • Docker-宿主机与容器之间的文件拷贝

    目录 一 xff0c Docker运行MySQL容器 二 xff0c 数据卷 三 xff0c 数据卷容器 四 xff0c Dockerfile制作增强版 五 xff0c Docker制作自定义Tomcat 一 xff0c Docker运行M
  • 小程序框架

    目录 一 xff0c 框架 二 xff0c 响应的数据绑定 三 xff0c 页面管理 四 xff0c 基础组件 逻辑层 App Service 五 xff0c 小程序的生命周期 六 xff0c 注册页面 1 使用 Page 构造器注册页面
  • 小程序后台数据交互-个人中心

    目录 一 xff0c 获取用户昵称和头像 登录过程 二 xff0c 登录 小程序 三 xff0c 后台 小程序服器配置 一 xff0c 获取用户昵称和头像 登录过程 小程序登录 小程序可以通过微信官方提供的登录能力方便地获取微信提供的用户身
  • 微服务框架及多模块开发

    目录 一 xff0c 项目模式 二 xff0c 项目架构图 三 xff0c 案例演示 主模块 公共子模块 子模块 添加页面公共资源 一 xff0c 项目模式 电商模式 xff1a 市面上有5种常见的电商模式 xff0c B2B B2C C2
  • Mybatis与微服务注册

    目录 一 xff0c Springboot整合MybatisPlus 创建商品微服务子模块 二 xff0c SpringBoot整合Freeamarker 三 SpringBoot整合微服务 amp gateway amp nginx 整合
  • 服务调用&分布式session

    目录 一 xff0c Nginx动静分离 二 xff0c 服务调用 创建配置zmall cart购物车模块 创建配置zmall order订单模块 服务调用 四 xff0c spring session实战 什么是Spring Sessio
  • C语言调试技巧(以vs编译器为例)

    实用调试技巧 什么是bug调试是什么 xff0c 调试有何重要调试是什么 xff1f 调试的基本步骤Debug和Release的介绍 Windows环境调试介绍调试快捷键调试的时候查看程序当前信息查看临时变量的值查看内存信息查看调用堆栈查看
  • (十三)STM32——串口通信(UART)

    目录 学习目标 内容 通信方法 并行通信 串行通信 通信方向 通信方式 UART 特点 串口参数 通信流程 寄存器 USART SR USART DR USART BRR 过程 代码 运行结果 运行结果 遇到的问题 总结 学习目标 本节我们
  • 关于VINS-MONO与VIO轨迹漂移问题定位的一些方向

    整个VINS MONO系统 xff0c 较容易在系统静止或外力给予较大冲击时产生轨迹漂移 xff0c 原因是imu的bias在预积分中持续发散 xff0c 视觉重投影误差产生的约束失效 如静止 xff0c 先验约束可能会在LM的线性求解器中
  • 爬虫的基本原理

    爬虫是一种自动化程序 xff0c 可以模拟人类在互联网上的行为 xff0c 从而获取网页上的信息 爬虫技术在互联网上的应用非常广泛 xff0c 例如搜索引擎 数据挖掘 网络爬虫等等 本文将从爬虫的基本原理 爬虫的分类 爬虫的应用 爬虫的优化
  • 通信接口五种主要的类型是什么?RS-232、485、CAN、USB

    笔者电子信息专业硕士毕业 xff0c 获得过多次电子设计大赛 大学生智能车 数学建模国奖 xff0c 现就职于南京某半导体芯片公司 xff0c 从事硬件研发 xff0c 电路设计研究 对于学电子的小伙伴 xff0c 深知入门的不易 xff0
  • 关于机器人状态估计/VIO/VSLAM中能观性/可观性/FEJ的一些直接解释

    知识来源是高翔博士与贺一家老师的VIO课程 xff0c 以及Barfoot教授的机器人学中的状态估计 可观性问题会直接带来多传感器融合融态中的关键手段 xff1a FEJ First Estimated Jacobian 即不同残差对同一状
  • 关于电子与电气自动化芯片侧的一些基础理解

    EEE Electrical and Electronics Engineering 电子与电气自动化工程 人类科技母行业 涉及的主要领域 xff1a 半导体元器件 芯片 xff0c 模组 PCBA xff0c 嵌入式系统 xff08 驱动
  • BA(后端)优化与卡尔曼滤波的一些区别

    今天这篇文章会写得深入一些 xff0c 主要知识来自于业内多位大佬的实际落地与自身的思考 主要涉及机器人状态估计与机器视觉 xff0c 多传感器结合时 xff0c BA优化与卡尔曼滤波的差异及如何选择 机器人状态估计中 xff0c 大家应该
  • 关于VIO零速更新(ZUPT)与控制三种约束的工程实践

    今天这篇是深度稍微高一些的 xff0c 尽量写细 xff0c 但是具体实践各家都有不同的方式与工程习惯 xff0c 就不多赘述了 小组工作比较忙 xff0c 代码还没来得及整理 xff0c 总体更新一下基础知识 VIO系统后端核心的三种约束
  • 关于DSO直接法与IMU预积分联合VIO/SLAM一些思路

    本文不适合初学者 xff1b 干货多没写具体方法 xff0c 目前还在数论分解和思考中 xff0c 估计得2个月后完成 必要性 xff1a 1 常规VIO系统如VINS MONO建立的地图质量太差 xff0c 稀疏且不便认知 2 假设并入D
  • 主流VIO/VSLAM系统改造与工程化落地

    今天主要写针对主流VIO和VSLAM如VINS MONO和DSO的工程改造思路 肯定是有相当价值的 xff0c 总体写得比较简单 xff0c 需要具备软件 硬件 算法等各方面综合能力才能掌握主要路径 xff0c 具体实现方面以后由其他同事来
  • VIO与全局快门及轮速计的一些应用小技巧

    封面就用一个可爱的小车车 之前各种针对VIO xff0c VSLAM和VINS的工程注意事项都讲过了 今天的内容主要是针对VSLAM xff0c VIO的实用性 比如Td xff0c 同步对时 xff0c 内参 xff0c 外参这一串 最近
  • 关于机器人状态估计(12)-VIO/VSLAM的稀疏与稠密

    VIO三相性与世界观室内ALL IN ONE 首先以此链接先对近期工作的视频做个正经的引流 xff0c 完成得这么好的效果 xff0c 仅仅是因为知乎限流1分钟以内的视频 xff0c 导致整个浏览量不到300 xff0c 让人非常不爽 这套

随机推荐

  • 关于机器人状态估计(13)-线性代数有多重要?18.06总结

    太久没更新主要是在忙开发和测试 xff0c 这几个月被很多同学提问 xff0c 同时接触了一些实习生 普遍发现动手能力不错 xff0c 数学基础却差异很大 从我身边电子 xff0c CV或者SLAM做得比较杰出的朋友来看 xff0c 大家普
  • postman的安装与使用

    目录 第一部分 xff1a 基础篇postman1 安装postman进入postman官网 如果是mac系统可以直接点击mac app安装 第二部分 xff1a 进阶篇1 使用自带的脚本对接口进行测试 第一部分 xff1a 基础篇 pos
  • DMA案例 外设到内存搬运

    DMA案例 外设到内存搬运 需求 使用DMA的方式将串口接收缓存寄存器的值搬运到内存中 xff0c 同时闪烁LED1 CubeMX配置 串口配置 DMA配置 串口中断配置 用到的库函数 HAL UART ENABLE span class
  • 用rs_lidar雷达跑lio_sam

    1 准备工作 imu绑定串口有线连接雷达并能用rviz显示雷达点云用两个imu标定包标定imu在完成第二步必要的工作后 xff0c 配置LIO SAM config 下的params yaml参数 xff0c 更改之前建议备份在旁边复制粘贴
  • ubuntu18.04安装ros及解决rosdep update失败问题

    1 安装ros 转自 https blog csdn net qq 44830040 article details 106049992 ops request misc 61 257B 2522request 255Fid 2522 25
  • 球机是枪机和云台机的结合体

    1 枪机是监控类CCD摄像机中一种 枪机外观长方体 xff0c 前面是C CS镜头接口 xff0c 枪机不包含镜头 所谓的枪机主要从外型 镜头安装接口上区分 2 监控类摄像机主要有 xff1a 枪机 小半球 大半球 一体机 球机几个类别 枪
  • ROS学习笔记-1

    一 ROS简介 ROS全称Robot Operating System 机器人操作系统 ROS是适用于机器人的开源元操作系统 ROS集成了大量的工具 xff0c 库 xff0c 协议 xff0c 提供类似OS所提供的功能 xff0c 简化对
  • C语言指针详解(1)

    指针详解 之前我说过一篇关于指针在C语言中的基本使用 xff0c 这次我再来细讲一下指针的其他内容 目录 一 指针详解 1 指针定义 2 指针类型 3 野指针 4 如何规避野指针 xff1f 1 指针定义 指针理解的2个要点 xff1a 1
  • C语言结构体详解 (2) 结构体内存对齐,默认对齐数

    前言 上次 xff0c 我讲到了关于结构体的基本使用 xff0c 大家若感兴趣的话看一看我之前写的一篇结构体博客 xff0c 里面记载了我对于结构体的创建 初始化 嵌套结构体 结构体的访问访问方式和结构体传参方式等知识的见解 xff0c C
  • C语言——十进制转换十六进制

    请编写程序 xff0c 输入十进制数 xff0c 输出对应的十六进制数 输入格式 十进制非负整数 输出格式 对应的十六进制非负整数 要求 xff1a 十六进制数中的字母均为大写形式 输入样哩 5050 输出样例 13BA 代码输入 xff1
  • 如何编写头文件及使用Makefile

    头文件中应该写什么 xff1a 头文件可能会被任意源文件包含 xff0c 意味着头文件中的内容可能会在多个目标文件中存在 xff0c 要保证合并时不要冲突 重点 xff1a 头文件只编写声明语句 xff0c 不能有定义语句 全局变量声明 函
  • 剖析Linux内存中的/proc/meminfo参数

    PROC MEMINFO之谜 proc meminfo是了解Linux系统内存使用状况的主要接口 xff0c 我们最常用的 free vmstat 等命令就是通过它获取数据的 xff0c proc meminfo所包含的信息比 free 等
  • 看完秒懂:Linux DMA mapping机制分析

    说明 xff1a Kernel版本 xff1a 4 14ARM64处理器 xff0c Contex A53 xff0c 双核使用工具 xff1a Source Insight 3 5 xff0c Visio 1 概述 DMA xff08 D
  • linux网络编程-多进程实现TCP并发服务器

    服务端流程步骤 socket函数创建监听套接字lfd bind函数将监听套接字绑定ip和端口 listen函数设置服务器为被动监听状态 xff0c 同时创建一条未完成连接队列 xff08 没走完tcp三次握手流程的连接 xff09 xff0
  • Linux内核中断下半部工作队列(work queue)

    工作队列work queue 工作队列 xff08 work queue xff09 是中断下半部的一种实现机制 xff0c 主要用于耗时任务处理 xff0c 由内核线程代表进程执行 工作队列运行于进程上下文 xff0c 因此允许阻塞 运行
  • 手把手带你部署Ceph集群

    前言 xff1a Ceph作为开源的分布式文件系统 xff0c 可以轻松地将存储容量扩展到PB以上并拥有不错的性能 Ceph提供对象存储 块存储和文件系统三种存储方式 xff0c 如果不想花时间安装ceph xff0c 可以通过ceph d
  • Linux 内核安全增强—— stack canary

    一 背景知识 aarch64的函数栈 1 栈生长方向与push pop操作 栈是一种运算受限的线性表 入栈的一端为栈顶 xff0c 另一端则为栈底 其生长方向和操作顺序理论上没有限定 而在aarch64平台上 栈是向低地址方向增长的 STA
  • Linux下Makefile的简单编写与使用

    Makefile 一个工程文件中的源文件可能有很多 xff0c 并且不同的功能 模块等都放在不同的目录中 xff0c 常规的编译已经不能高效化的处理这样的问题 xff0c 而Makefile就是为解决这一问题而来 Makefile一旦写好
  • STM32 USART 串口DMA收发注意事项

    正常情况这里不介绍 目录 1 低波特率情况 xff0c 接收信号可能会出现干扰 2 波特率300时 xff0c DMA接收无法工作 3 波特率1200时DMA发送 4 具体现象如下 环境 xff1a 主频72M STM32F103C8 注意
  • STM32学习笔记———几种简单传感器的数据读取

    引言 传感器正如计算机的眼睛 从广义上讲 xff0c 传感器就是一种能感知外界信息 xff0c 并将这些信息按照一定规律转换成可用的电信号或其他形式的输出信号的装置 xff0c 达到对信息的存储 xff0c 传输 xff0c 控制的目的 本