从零开始,耗时两年,19岁小伙自制一块32位Risc-V处理器,可玩「贪吃蛇」

2023-05-16

从零开始,耗时两年,19岁小伙自制一块32位Risc-V处理器,可玩「贪吃蛇」

脚本之家 今天

图片

 关注

“脚本之家

”,与百万开发者在一起

图片

本文经机器之心(微信公众号:almosthuman2014)

授权转载,禁止二次转载

编辑:杜伟

文末包邮送书!

从设计 CPU、制作原型机、最终成品到软件编程,19 岁极客小伙用了整整两年的时间。

 

RISC-V 是一个基于精简指令集(RISC)原则的开源指令集架构(ISA),它是对应开源软件运动的一种「开源硬件」。该项目于 2010 年始于加州大学伯克利分校,项目贡献者是该大学以外的志愿者和行业工作者。

 

RISC-V 指令集的设计考虑了小型、快速、低功耗的现实情况来实做,但并没有对特定的微架构做过度的设计。与大多数指令集相比,RISC-V 指令集可以自由地用于任何目的,允许任何人设计、制造和销售 RISC-V 芯片和软件。

 

2021 年 4 月初,一位热衷于自制 CPU 的 19 岁极客小伙 Filip Szkandera自己设计和制造出了 32 位功能性 RISC-V CPU,并构建了与其他自制计算机不同的个人计算机「菠萝一号(Pineapple ONE)」。从设计、调试和安装 CPU 和所有硬件,Filip 整整花了两年时间。Filip 还受邀在东京举办的 RISC-V Days Tokyo 2021 Spring 上做了演示,他也成为了该会议自 2017 年举办以来最年轻的演示者。

 

图片

创建者 Filip Szkandera。

 

整体来看,「菠萝一号」是由 8 块正方形打印电路板垂直堆叠组成,每块边侧高度约为 10 厘米,外加一个 VGA 显示接口卡。一共使用了 230 多个集成电路,大多数是 74HCT 系列逻辑芯片。示意图如下:

 

图片

 

 

32 位 RISC-V CPU 的规格如下:

 

  • 最大时钟速度:500kHz

  • 程序内存:512kB

  • 内存 512kB

  • 闪存 512kB

  • VGA 输出:200×150px(黑白)

  • 2 个 8 位输入端口

  • 2 个 8 位输出端口

 

目前,「菠萝一号」计算机支持的命令包括:HELLO、HI、PEEK、POKE

、SYSTEM INFORMATION、CLEAR 等。

 

图片

 

此外虽然 CPU 的运行速度仅有 500kHz,但玩个贪吃蛇游戏还是绰绰有余的:

 

图片

 

Filip 在一篇博客中介绍了他从设计 CPU、制作原型机、输入 / 输出端口、最终成品到软件编程的技术细节(下文以第一人称叙述)。

 

设计自己的 RISC-V CPU

 

此前,我在 Youtube 上发现了电子爱好者 Ben Eater 自制 CPU(构建著名的 8 位计算机和经典的 6502 微处理器)的相关教程,所以非常着迷,也就有了自制 CPU 的想法。然而,我觉得对于 CPU 基础知识了解的还不够,因此又观看了 Google Robotics 软件工程师 Robert Baruch 的教程视频,他只使用了基本逻辑元件构建了 32 位 RISC-V CPU。

 

之后,我便开始在一个名为「Logisim-Evolution」的项目中制造自己的 RISC-V CPU。我给自己设定的目标是不使用任何微控制器或 FPGA,只使用基本的分立逻辑元件。编译器支持的最基础 RISC-V CPU 必须包含扩展「整数(I)」且至少为 32 位。此外,我还需要安装一个 VGA(视频图形阵列)输出卡。

 

我花了整整 6 个月的时间在 Logisim 项目上,终于得到一个可运行的程序模拟。下一步绘制所有模块的原理图、从 JLCPCB 网站上购买所有的 PCB(印制电路板)并重新设计。由于这是我首次购买 PCB,担心搞砸一切,于是决定在设计过程中分模块处理,一次选购几个,以免自己应接不暇。

 

Logisim-Evolution 项目中的模拟原理图如下:

 

图片

 

经过了两轮设计,最后只剩下几个模块需要处理,其中一个是直接生成器(immediate generator)。当我绞尽脑汁想将它从模拟转化为合适的原理图时,发现自己犯了一个致命错误:完全不清楚模拟是如何运行的。幸运的是,修复起来也没有那么困难,于是对已经制作完成的 PCB 做了改进。

 

原型机

 

接下来,我将开源电子原型平台 Arduino 连接到每个 PCB 的输入端、同时监控输出端并与预测端(prediction)做对比,从而对这些 PCB 进行测试。设置好之后,一切就可以自动运行了。每次测试都至少持续数个小时。

 

当我准备好将所有 PCB 整合到一块时,模块也已经间隔地安装在了木头上,并使用 3D 打印垫片(spacer)来固定。接着上传了一个测试程序并开始测试。

 

原型机示意图如下:

 

图片

Arduino 平台仅用来调试,没有在最终成品中使用。

 

尽管我单独测试了每个 PCB,但首次尝试还是失败了,这不足为奇。我又不得不花费大量时间来找失败的原因,找出了一些错误,如很难发现的时序问题。

 

输入 / 输出端口

 

我构建的 RISC-V CPU 拥有两个 8 位输入端口和两个 8 位输出端口,你可以通过 RJ50 连接器在前板上访问。此外,顶部模块上有一个 7 段式显示器(7-segment display),它与一个可以通过程序访问的寄存器相连。

 

至于与 VGA 显示器的连接,我受 Ben Eater 的启发构建了一个 VGA 卡。VGA 的输出分辨率是 200×150 像素,黑白显示。虽然我想实现彩色显示,但需要使用大型 V-RAM,太贵了,也就放弃了。

 

下板(board)将显示存储在 EEPROM(带电可擦可编程只读存储器,型号 39SF010A)中的静态图像。我在最终成品中使用到了双端口 SRAM(静态随机存取存储器)。

 

图片

 

我还构建了一些演示用的 I/O 模块,它们在末端都有 RJ50 连接器。

 

图片

PS/2 解码器是买的现成的,我没有时间自己制作。

 

最终成品

 

让原型机运行不太容易,在大约 5 个月的时间后,我终于成功了。

 

我又重新设计了所有的 PCB,修复错误,并将这些 PCB 以塔状结构堆叠,所以每个模块仅用针座(pinheader)相连接。重新设计 PCB 大约花了 3 个月的时间,然后对最终的 PCB 进行有序排列。

 

此外,我还设计并使用 Prusa i3 3D 打印机打印了一个圆柱体外壳,足以容纳所有的 PCB 和 I/O 连接器,这样也可以将键盘和 VGA 显示器直接连接到计算机。

 

图片

最终成品,左:无圆柱体外壳,右:安装圆柱体外壳。

 

最终成品的组件拆卸:

 

图片

 

方框图:

 

图片

 

编程

 

最后,在经过了数百小时的设计、焊接和调试,我终于看到了成功的曙光。在好友 Jan Vykydal 的帮助下,我设置了一个兼容 RISC-V 且运行良好的编译器,使用 C 语言编写了一些系统软件和 demo 程序。这个编译器可以生成机器代码,我使用一个 Python 脚本来接收代码并 flash 入 CPU 内存。

 

图片

 

我还创建了一个具有一些有用函数的库,代码如下:

 

图片

 

Pineshell:

 

利用这个库,我创建了一个简单的 shell 程序,这样可以通过「与其中一个输入端口相连的 PS/2 键盘」来实现与该程序的交互。我使用带有模块的 PS/2 键盘将输入信号解码为 8 位。

 

图片

 

大功告成!

 

参考链接:

https://riscv-association.jp/en/2021/04/filip-szkandera/

https://hackaday.io/project/178826-pineapple-one/details

https://www.youtube.com/watch?v=NUAVKNVrPh0&t=16s

https://spectrum.ieee.org/geek-life/hands-on/build-a-riscv-cpu-from-scratch

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

从零开始,耗时两年,19岁小伙自制一块32位Risc-V处理器,可玩「贪吃蛇」 的相关文章

  • C++设计模式13:责任链模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式7:桥接模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式8:组合模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式11:享元模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式15:解释器模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式16:迭代器模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式21:策略模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式18:备忘录模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式20:状态模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • stm32直流电机驱动与测速

    stm32直流电机驱动与测速 说实话就现在的市场应用中stm32已经占到了绝对住到的地位 xff0c 51已经成为过去式 xff0c 32的功能更加强大 xff0c 虽然相应的难度有所增加 xff0c 但是依然阻止不了大家学习32的脚步 x
  • C++设计模式22:模板方法模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++ 设计模式23:访问者模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式17:中介者模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • C++设计模式14:命令模式

    C 23种设计模式系列文章目录 创建型模式 第1式 工厂方法模式 第2式 抽象工厂模式 第3式 单例模式 第4式 建造者模式 第5式 原型模式 结构型模式 第6式 适配器模式 第7式 桥接模式 第8式 组合模式 第9式 装饰器模式
  • GPS 和 RTK 定位

    refers xff1a https blog csdn net u012241570 article details 80802675 GPS定位的基本原理 测量出已知位置的卫星到地面GPS接收器之间的距离 xff0c 然后接收器通过与至
  • 关于GD32的CMakeLists以及gcc部分编译选项的解释

    set CMAKE SYSTEM NAME Generic cmake最低版本 cmake minimum required VERSION 3 0 0 工程名称 语言 project TEST PRJ NAME LANGUAGES C C
  • ulimit -s 指定栈上的内存上限

    转自 xff1a http blog chinaunix net uid 24439730 id 144094 html ulimit s 指定栈上的内存上限 xff0c 单位为KB xff0c 如 xff1a root 64 wdqf1w
  • C++头文件重复包含问题

    为了避免同一个文件被include多次 有两种方式 1 span class token macro property span class token directive keyword ifdef span SOMEFILE H spa
  • TCP(select函数模型)

    客户端代码 include lt stdio h gt include lt sys types h gt include lt sys socket h gt include lt arpa inet h gt include lt st
  • i2c那些坑

    origin http bbs ntpcb com simple t126695 html I2C 的那些坑 一般情况下 xff0c i2c 设备焊接没什么问题 xff0c 按照设备手册一步步来 xff0c 基本上就顺风顺水能够用起来 如果

随机推荐

  • stm32f103系列引脚定义-功能图

    器件功能和配置 STM32F103xx增强型 STM32F103xx增强型模块框架图 STM32F103xx增强型VFQFPN36管脚图 STM32F103xx增强型LQFP100管脚图 STM32F103xx增强型LQFP64管脚图 ST
  • 用数百行代码实现60亿设备互联:微软重金收购的ThreadX硬在何处

    origin https www sohu com a 315222502 485057 2019年4月 xff0c 微软收购了ThreadX的母公司Express Logic 公司 而ThreadX有几亿个设备在运行 1 物联网操作系统简
  • Cache和DMA一致性

    cache读必须要buffer是cacheline对齐的 DMA应该多多少少知道点吧 DMA Direct Memory Access 是指在外接可以不用CPU干预 xff0c 直接把数据传输到内存的技术 这个过程中可以把CPU解放出来 x
  • stm32几种低功耗模式的实现和差别

    origin https blog csdn net jian3214 article details 99818603 01 前言 按功耗由高到低排列 xff0c STM32具有运行 睡眠 停止和待机四种工作模式 上电复位后 STM32
  • threadx也开源了

    前一段时间ucos开源了 xff0c 今天微软收购的threadx也开源了 xff0c 行业剧变呀 xff01 xff01 xff01 2020 5 26
  • armv8-M 32bit处理器

    https www eet china com mp a14579 html https developer arm com ip products processors cortex m 最早的Cortex M0属于Armv6 M架构 x
  • 作为ARM Cortex-M家族的继承者 Cortex-M23与M33有哪五大特色?

    http news eeworld com cn xfdz article 2017011259937 html 集微网消息 xff0c ARM处理器在嵌入式设备领域的应用非常广泛 基于ARM Cortex处理器的片上系统 xff08 So
  • emmc5.1, ufs2.0, ufs3.0

    总的来说 xff0c UFS3 0的综合性能 xff0c 特别是持续读写速度有着秒杀UFS2 1前辈的表现 xff0c 只是在随机读写和SQLite性能上 xff0c 却依旧和双通道的UFS2 1持平 xff0c 有些小遗憾 最后 xff0
  • 串行Norflash是如何实现XIP的?

    先说问题 xff1a 要想程序在串行的Norflash中运行 xff0c 到底需要做哪些工作 xff1f Norflash和Nandflash想必大家都知道 恕本人才学疏浅 xff0c 最近突然发现Norflash可以并行连接实现XIP x
  • ARM汇编语言 - 简介 [一]

    origin https zhuanlan zhihu com p 82490125 ARM汇编语言 简介 一 兰新宇 talk is cheap 说明 xff1a 本系列文章将主要以ARMv7和ARMv8架构为例 xff0c 介绍ARM汇
  • ARM汇编语言 - 简介 [二]

    上文介绍了ARM的数据传送指令 xff0c 本文将主要介绍ARM中的移位 序转和位操作等数据处理指令 移位指令 移位包括逻辑移位和算术移位 xff0c 所谓 逻辑 就是将寄存器中存放的内容仅仅视为一串bits xff0c 移位的时候只需要将
  • 智能小车开发的重点之一电机该如何选型

    一 智能小车的分类 二 电机的分类 无刷电机要好于有刷电机 xff0c 优点 xff1a 1 没有损耗 xff0c 有刷电机有寿命 2 静音 xff0c 有刷电机噪音比较大 无刷电机分为带霍尔传感器和不带霍尔传感器两种 xff0c 因为无刷
  • ARM汇编语言 - 简介 [三]

    上文介绍了ARM的数据处理指令 xff0c 本文将主要介绍ARM中的跳转指令 跳转指令 无条件跳转 ARM中的基础跳转指令就一个字母 34 B 34 xff0c 代表Branch xff0c 相比起x86中和它功能基本相同的 34 jmp
  • CAN总线35周年特别篇 -- CAN总线的前世今生

    origin https mp weixin qq com s MloRz 4sio8QGdNItNRBjQ CAN总线35周年之际 xff0c 花了一晚上时间整理翻译了下 xff0c 通过这个帖子大家会对当前市场上各种CAN名词有的全面系
  • 微控制器CPU性能测试基准CoreMark

    origin https www cnblogs com henjay724 p 8729364 html 痞子衡嵌入式 xff1a 微控制器CPU性能测试基准 EEMBC CoreMark 大家好 xff0c 我是痞子衡 xff0c 是正
  • 意外发现,Cortex-M7的性能和诸多关键参数碾压A7和R7

    origin https www amobbs com thread 5676525 1 1 html 之前一直以为ARM A R M M排在最后也最便宜 xff0c 肯定性能最低 xff0c 但最近意外发现并非如此 xff0c M7居然完
  • gcc之-fomit-frame-point

    Kernel里的dump stack oops打印出来的backstrace调用链表是怎样实现的呢 xff1f 大家都知道当发生函数调用的时候 xff0c 函数的参数传递 xff0c 返回值传递都要遵循一定的规则 xff0c 在ARM体系架
  • Lauterbach trace32与 jlink

    一直不太明白trace32为何这么贵 xff0c 这篇文章讲了一些 xff0c 稍微明白一点了 一个小工具背后的故事 昨天我们推送了华为任正非2012年的讲话稿 真正的出路 xff1a 重读任正非2012实验室讲话 任总是在商场上真刀真枪干
  • 嵌入式开发输出调试信息的几种方法(常规法及非常规法)!

    origin https mp weixin qq com s 7LolqWUeJ4tCENh6yVmvXw 嵌入式开发的一个特点是很多时候没有操作系统 xff0c 或者没有文件系统 xff0c 常规的打印log到文件的方法基本不适用 最常
  • 从零开始,耗时两年,19岁小伙自制一块32位Risc-V处理器,可玩「贪吃蛇」

    从零开始 xff0c 耗时两年 xff0c 19岁小伙自制一块32位Risc V处理器 xff0c 可玩 贪吃蛇 脚本之家 今天 关注 脚本之家 xff0c 与百万开发者在一起 本文经机器之心 xff08 微信公众号 xff1a almos