内存存取区——堆和栈

2023-05-16

 

一、预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)— 由编译器自动分配释放 ,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap) — 一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—,全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。 - 程序结束后有系统释放
4、文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放
5、程序代码区—存放函数体的二进制代码。

例子程序
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456/0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456/0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。


二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。 例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活
2.5堆和栈中的存储内容
栈: 在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。
2.6存取效率的比较

char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include <stdio.h>
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。


2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

堆和栈的区别主要分:
操作系统方面的堆和栈,如上面说的那些,不多说了。
还有就是数据结构方面的堆和栈,这些都是不同的概念。这里的堆实际上指的就是(满足堆性质的)优先队列的一种数据结构,第1个元素有最高的优先权;栈实际上就是满足先进后出的性质的数学或数据结构。
虽然堆栈,堆栈的说法是连起来叫,但是他们还是有很大区别的,连着叫只是由于历史的原因。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

内存存取区——堆和栈 的相关文章

随机推荐

  • C/C++封装socket通信类

    C C 43 43 封装socket通信类 一 读取 写入数据1 recvn函数2 sendn函数3 TcpRecv函数4 TcpSend函数 二 C的封装方法1 客户端2 服务端 三 C 43 43 的封装方法1 客户端2 服务端 不管是
  • Invalid prop: custom validator check failed for prop “value“

    问题描述 看见这种大片的爆红 xff0c 就两个字 xff1a 头疼 xff01 xff01 xff01 虽然这样的爆红不影响程序运行 xff0c 但是作为一个合格的程序猿 xff0c 我们怎么可以允许这个问题出现呢 x1f60e 问题排查
  • 如何计算UDP/TCP检验和checksum

    一 下面的图是一个UDP的检验和所需要用到的所有信息 xff0c 包括三个部分 xff1a 1 UDP伪首部 2 UDP首部 3 UDP的数据部分 xff08 切记不要遗漏该部分 xff0c 否则就 吐血了 xff09 首先解释下伪首部的概
  • 日常生活小技巧 -- UART (串口)回环测试

    转自https blog csdn net qq 29350001 article details 77335721 新买的USB转串口线 需要测试一下是否是OK的 该如何测试 xff1f 其实很简单 xff0c 就是讲 Tx 和 Rx 短
  • C/C++:头文件与cpp文件的声明/定义

    一 头文件 1 一般来说 xff0c 头文件仅仅用于声明 xff0c 相应的定义要放在对应的cpp文件中 声明的内容一般可以是 xff1a 1 类定义体 xff1b 2 类中的成员方法 xff1b 3 类外的函数 xff1b 4 类外的变量
  • 树莓派简易人脸追踪云台

    前言 xff1a 这篇文章属于此系列 xff1a 一个用树莓派做的会聊天 xff0c 能人脸识别 xff08 支持云台追踪 xff09 和发送邮件的小玩具 https blog csdn net yonglisikao article de
  • Android JNI调用概要

    一 Java调C 编写Native方法 使用javah命令生成 h头文件 复制 h头文件到CPP工程中 复制jni md h和jni h到CPP工程中 实现 h头文件中生成的 生成dll文件 C的函数名称 xff1a Java 包名 方法名
  • curl的请求头与响应头获取

    1 从CURL中获取响应头 oCurl 61 curl init 设置请求头 有时候需要 有时候不用 看请求网址是否有对应的要求 header 61 34 Content type application x www form urlenc
  • C++头文件包含顺序问题

    C 43 43 中类的声明和类的定义分开几乎成了一个不成文的规定 这样做的好处是使得类的声明和实现分开 xff0c 清晰明了 xff0c 同时便于库函数发布 但是在实际编程中由此也常常引起了一些由于头文件的包含顺序问题而产生的符号未定义的编
  • 详解printf重定向到文件中,打印日志的实现

    printf是将信息打印到终端 xff0c 但是有时当我们需要打印的信息比较多时 xff0c 终端无法将所有信息都能够保留在屏幕上 xff0c 这样我们就不能在终端获取我们想要的信息了 xff0c 重定向很好的帮我们解决了这个问题 xff0
  • 计划

    文档计划 读书的时候 2010年左右 由于和导师做了一些涉及单片机的项目 xff0c 狠狠熟悉了一把C语言 xff0c 所以试图写一个实时内核 xff0c 但是由于涉及大量的硬件知识 xff0c 底层汇编和任务栈之类的东西 xff0c 而这
  • CMOS内核--序言

    CMOS内核 序言 本文介绍一些CMOS中需要用的基础知识 由于在单片机系统中不会有MMU所以单片机系统中的每个任务就是一个线程 xff0c 共用系统的地址空间 xff0c 为了精确性 xff0c 后文中措辞中使用线程替换任务 xff0c
  • 欧拉角和旋转矩阵之间的转换

    一 什么是欧拉角 在3D 空间中 xff0c 表示物体的旋转可以由三个欧拉角来表示 xff1a pitch围绕X轴旋转 xff0c 叫俯仰角 yaw围绕Y轴旋转 xff0c 叫偏航角 roll围绕Z轴旋转 xff0c 叫翻滚角 这三个角的顺
  • C++编译之(1)-g++单/多文件/库的编译及C标准的发展历程

    g 43 43 编译入门 本文为您介绍g 43 43 的编译用法 xff1b 通过从最简单的单文件编译 xff0c 到多文件编译 xff0c 再到动态库 静态库的编译及使用 xff1b 例子都经过实际编译并运行 xff0c 可谓全网最良心之
  • STM32F103-寄存器开发-2

    上一篇博客中我已经配置好了对应的时钟 xff0c 接下来就是对GPIOC口进行操作了 为此我们需要配置端口配置寄存器 xff0c 但是在用户手册中查阅 xff0c 可以发现有两个寄存器 xff0c CRL和CRH xff0c 我们应该使用哪
  • 25.UART串口发送过程与配置

    UART串口收发过程与配置 参考资料 STM32Fx中文参考手册 第26章 xff1a 通用同步异步收发器章节 开发板配套教程 STM32Fx开发指南 串口实验章节 笔记基于正点原子官方视频 视频连接https www bilibili c
  • c语言HTTP服务器,超级简易版。

    算是对linux多线程的复习把 xff0c 尝试这用socket写了一个简单的HTTP服务器 xff0c 当访问它的时候它会给你发送一个HTML文件 xff0c 这个HTML文件需要自己写 代码 span class hljs prepro
  • linux POST请求

    linux POST请求 curl https baidu com X POST H key1 value1 H key2 value2 d name test age 23 i 说明 xff1a H header 后接key value对
  • CPPREST处理跨域问题

    本例使用的代码框架非常简单 按照下面这个路径搭建即可 https blog csdn net youyicc article details 108261287 问题由来 网页端需要动态检测C 服务器这边服务是否正常运行 所以采用的方式是h
  • 内存存取区——堆和栈

    一 预备知识 程序的内存分配 一个由c C 43 43 编译的程序占用的内存分为以下几个部分 1 栈区 xff08 stack xff09 由编译器自动分配释放 xff0c 存放函数的参数值 xff0c 局部变量的值等 其操作方式类似于数据