无人机多任务寻径仿真软件与实验平台(一)

2023-05-16

项目背景:

近年来,无人机的应用领域已经得到了极大的拓展,旋翼无人机凭借较大的载荷,稳定的飞行状态与对高空环境的高度适应,成为了应用最为广泛的一类无人机。

在欧洲,北美洲等地区,存在大量人烟稀少,信号质量较差乃至无信号的森林,荒原地区,对这些地区进行环境实时监测成为了一项重要工作,由于缺乏基础设施建设以及地面环境复杂,设置无源的检测平台成为了可行的方案,而如何从这些分布广泛的平台采集数据成为了项目的难点。为此,旋翼无人机提供了一种策略,既通过旋翼无人机周期性的飞行,在一定区域内的所有无源监测站上空采集数据,并最终由无人机传输到数据中心。在可以预见的未来,无人机甚至可以胜任更换电池,调整监测站位置,定点提取等任务,最终打造智能,可靠,可持续的空中地面物联网网络。

为了满足上述基本要求,旋翼无人机的路径选择算法成为了核心问题之一,由于无人机通常能源有限,飞行速度也有限制,高效节能地对数据进行采集需要一系列路径优化算法进行支持,也需要搭建基础实验平台,在野外实验之前进行提前验证。本项目的目标即是搭建模拟平台与室内无人机实验平台,对各类路径优化算法的性能进行直观的测试和验证,以及提出一种路径优化算法,对无人机多目标的工作路径进行进一步优化,以起到节约能源提高效率的最终目的。

   本项目的核心难点在于数据的提取,转换与处理,以及路径算法的构建。当前的旋翼无人机需要根据原厂提供的development kit进行扩展开发,其数据接口与实验器材提供的坐标数据存在较大差异,此外对于室内测定的任务点,如何转化成位于模拟平台上的可视化的坐标点,并进行后续路径规划将是亟待解决的问题。在模拟平台构建成功后,还需要开发路径算法模块,对多种路径优化算法进行测试以评价其优越性。最终,项目需要落实到硬件上,将模拟平台上的飞行控制导入实验平台,通过实际测试验证项目成果。

出自项目开题报告白皮书

目标:

本项目到截止时需要至少有以下成果:

 1.电脑端可视化应用既“无人机寻径仿真平台”,需要用图形化界面展现对于室内多航点任务的执行过程,在界面中用户可以通过点击或者手动设置坐标形式来设置实验航点,但大多数情况下为了验证飞行效果,需要由外部导入精确坐标点,该坐标点由nokov动作捕捉设备提取。

2.简单无人机飞控软件,该软件通过遥控器向Mavic2发出指令,实现室内航点飞行。通过dji sdk进行飞控软件开发,实现室内环境下无人机精确定点飞行。需要实现无人机坐标系和室内试验场坐标系的转换。此外通过数据接口可以获取无人机电量,载荷等情况,用于分析。

3.寻径算法云计算模块,从1中获取精确坐标点,由枚举+优化或其它启发式算法计算飞行路径,并将航点顺序反馈给1,2,在1中实现软件仿真,在2中控制无人机在室内执行飞行过程。

上述三部分基本形式如图:

 实现上述目标后,通过录像记录部分实验结果,进行展示。

难点分析:

1.坐标转换。对于Mavic2无人机来说,飞行控制基于以本机为坐标原点的坐标系,而在实验室环境下需要通过实验室坐标来控制定点飞行,因此在将坐标信息输入无人机之前需要进行坐标系转换工作,这部分工作难度较大,但是一旦实现单个定点飞行,则后续许多问题都将迎刃而解。

2.模拟仿真平台构建。构建模拟仿真平台将不得不考虑无人机的所受的物理影响,为了简单起见,这里仅仅采用最基本的几项参数,如无人机飞行速度等进行模拟,这部分需要形成图形界面,相对工程难度和代码量都很大。

3.数据网络搭建。Nokov设备本身连接seeker软件,而该软件可以通过vrpn服务器向ros广播数据,这部分就需要搭建实验室局域网,此外云计算平台返回的结果也需要通过互联网来传输,飞控软件也需要局域网来获取来自模拟仿真平台的数据,因此实验室搭建数据网络就成为了重要工作,如何保证数据准确顺利,低延迟地传递也是难题。

4.优化算法:对各类枚举、启发式搜索、最优化算法的效果进行验证,可能的情况下需要对先前的算法提供优化。

5.时间紧迫。

里程碑(加粗为早期里程碑):

1.编写最基础的通过软件控制无人机飞行的控制器,实现无人机按照指令移动。(无需界面和定点飞行。)

2.实现坐标转换与无人机定点飞行,验证准确性。

3.搭建基本云计算框架,并至少填充一种算法,从接口返回路径数据。

4.能够从动作捕捉软件接收到数据,并通过接口发送给其它软件,实现数据传输。

5.实现无人机多个点连续飞行。

6.实现控制软件和模拟仿真平台的对接(通过数据接口)

7.实现无人机飞行数据的反馈。

8.在屏幕上显示与飞行路径,无人机相关的信息,并允许用户自行设置航点。

9.在8的基础上,由nokov设备读入航点。

10.实现无人机在室内按照路径定点飞行。

开发过程反馈:

每周5晚7点例会,组员每周至少更新一篇博客,项目博客两周更新一次最新进度,对于难以攻克的问题及时反馈,共同讨论。

前瞻性扩展:

1.对于单个模拟仿真软件,未来可以连接多个无人机飞控软件,而实现多无人机协同测试。(目前考虑到室内空间和技术问题,实现难度较大。)

2.基于真实物理的模拟仿真。

3.无人机高度控制(将实验场景扩展到三维界面)(暂不考虑)

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

无人机多任务寻径仿真软件与实验平台(一) 的相关文章

  • 两轮差速小车循线控制原理分析

    硬件资料设定 xff1a 小车驱动来自于两个相同的电机 xff0c 转向依靠两轮差速实现 xff0c 小车前后左右安装超声波传感器 xff0c 前后各一个 xff0c 左右各两个 xff1b 功能目标 xff1a 假设小车左侧有墙壁 xff
  • ch06-Pytorch的正则化与归一化

    ch06 Pytorch的正则化与归一化 0 引言1 weight decay 和 dropout1 1 Regularization1 2 Dropout 2 Normalization2 1 Batch Normalization2 2
  • ch07-Pytorch的训练技巧

    ch07 Pytorch的训练技巧 0 引言1 模型保存与加载1 1 序列化与反序列化1 2 PyTorch 中的模型保存与加载1 3 模型的断点续训练 2 模型 Finetune2 1 Transfer Learning amp Mode
  • opencv-contrib-Python编译module 'cv2.cv2' has no attribute 'xfeatures2d'

    opencv contrib Python编译module 39 cv2 cv2 39 has no attribute 39 xfeatures2d 39 引言解决步骤一解决步骤二 引言 opencv contrib Python编译出现
  • find_package()函数

    find package函数 引言1 find package用法2 find package原理3 A required library with LAPACK API not found 错误解决4 添加findpackage查询路径
  • py安装文件时报错usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]

    py安装文件时报错usage setup py global opts cmd1 cmd1 opts cmd2 cmd2 opts 引言solved 引言 报错 xff1a python setup py fastentrypoints u
  • VScode单步调试

    VScode配置 0 快捷键1 安装clang2 VScodeDebug3 Cmake支持gdb调试的方法 0 快捷键 稍大工程在vscode下的调试参考该博客 Ctrl 43 打开默认终端 Ctrl 43 Shift 43 新建新的终端
  • 串口通信简介

    串口通信 串口通信是一种串行异步通信 xff0c 通信双方以字符帧作为数据传输单位 xff0c 字符帧按位依次传输 xff0c 每个位占固定的时间长度 两个字符帧之间的传输时间间隔可以是任意的 xff0c 即传输完一个字符帧之后 xff0c
  • ubuntu16.0 ROS(介绍EAI的YDLIDAR-X4激光雷达在ROS下使用方法)

    YDLIDAR X4激光雷达介绍 YDLIDAR X4激光雷达是深圳越登智能科技有限公司 xff08 YDLIDAR xff0c 这家公司属于EAI xff09 研发的一款 360 度二维测距产品 xff0c 本产品基于三角测距原理 xff
  • php使用http_build_query,parse_url,parse_str创建与解析url

    1 http build query http build query 可以创建urlencode之后的请求字符串 span class hljs keyword string span http build query mixed spa
  • 无人驾驶小车调试笔记(六)-- 车轮校准

    简介 xff1a 小车的动力完全来自于两个电机带动的车轮 xff0c 在理想状态下 xff0c 给两个电机同样的驱动参数 xff0c 两个车轮会以同样的转速带动小车直线行驶 xff0c 而实际情况是每个电机可能都会有个体差异 xff0c 也
  • Nginx HTTP详解

    正文 1 Nginx启动流程 2 HTTP 初始化 新连接建立时的行为 在上次博客的最后可以看到 xff0c 在ngx event accept方法建立连接的最后一步 xff0c 将会调用ngx listening t监听结构体的handl
  • 时钟周期,机器周期,指令周期的相互关系

    1 时钟周期 61 振荡周期 xff0c 名称不同而已 xff0c 都是等于单片机晶振频率的倒数 xff0c 如常见的外接12M晶振 xff0c 那它的时钟周期 61 1 12M 2 机器周期 xff1a 8051系列单片机的机器周期 61
  • 单片机的分频是什么意思?

    分频就是单片机的时钟频率 xff08 也就是晶振的震荡频率 xff09 F经过12分频 xff0c 变换成F 12的频率 简单的来说就是以整数倍降低频率 2分频就是分频前的频率除以2 xff1b 4分频就是分频前的频率除以4 比如 xff1
  • NMOS和PMOS管

    这里我先说一下我自己分辨MOS管的方法 对于NMOS我们看下图中的箭头 xff0c 都是远离源头 对于PMOS我们看箭头 xff0c 都是指向源头 P xff1a POSITIVE积极的寻找自己的起源 N xff1a NEGTIVE消极的远
  • 基本运算放大电路

    我先说明 下面的内容应该很多人都看到过 xff0c 但是我建议还是细看 xff0c 最好自己推一下 我就是这么做的 运算放大器工作原理综述 xff1a 运算放大器组成的电路五花八门 xff0c 令人眼花瞭乱 xff0c 在分析运算放大器工作
  • PCB板框的绘制——AD19

    pcb板框的绘制当然首先要切换到keep out 层才行 找到设置 xff0c 找到keep out 假如我们要绘制一个矩形的板框 xff0c 我们选择线径就可以 手动绘制一个矩形的板框 我们需要让我们的板子边框按照我们所绘制的走线来定义
  • 零基础自学STM32-野火——GPIO复习篇——使用绝对地址操作GPIO

    今天主要是复习一下 结合野火的 零基础开发指南 名字没记住大概是这个 先放一张结构图 存储器映射 xff08 初学重点 xff09 xff1a 我们的片内外设比如 xff1a Flash Sram Fsmc 以及挂在AHB 总线上的外设 x
  • Lcd1602——斌哥51

    最新修改时间2022 7 22 LCD1602 16代表显示16个字符 xff0c 2代表总共显示两行 芯片的工作电压是4 5 5 5v 工作电流2 0ma xff08 5V xff09 模块最佳工作电压5 0v 字符尺寸 xff1a 2

随机推荐

  • 无人驾驶小车调试笔记(七)-- 相机校准

    简介 xff1a 在第五节的内容中 xff0c 我们学习了使用rqt工具集观看摄像头视频流的方法 xff0c 细心的同学应该会发现camera node发布的视频数据中的图像有变形现象 xff0c 图像变形会导致直线不直 xff0c 部分区
  • Python实现MySql、SqlServer增删改查操作

    span class token keyword import span pymssql span class token keyword def span span class token function connection sql
  • ds1302——斌哥51

    以下内容分别借鉴了 清翔 51 xff0c 斌哥51 xff0c 以及CSDN 普通的不普通少年 内部结构 xff1a DS1302 包括时钟 日历寄存器和 31 字节 xff08 8 位 xff09 的数据暂存寄存器 xff0c 数据通信
  • AD添加LOGO

    先上原文链接 xff1a http www allchiphome com circuit pcb logo creator http www allchiphome com circuit pcb logo creator http ww
  • 视频播放组件实战【LivePlayer H5播放器】

    在公司项目开发中 xff0c 有一个项目里面需要做一个视频播放的功能 xff0c 播放方式是调用海康平台提供的接口获取流地址来进行视频的播放并且最重要的是需要支持flash 由于前端用的Vue xff0c 对比了几个 xff0c 最后选择了
  • 如何用示波器测量串口

    如何确定时基 假如要测量的波特率为9600 则每一比特位的时间为 xff1a 1 9600 104 s xff0c 一般示波器横向上每个大格子里5个小格子 xff0c 要想看清一比特位一般需要一个小格子就够了 xff0c 则时基为 xff1
  • Keil使用命令行附加预定义宏编译

    1 前言 很多时候 xff0c 一份Keil工程代码可能需要满足多个不同的应用场景 可以通过逻辑判断 xff0c 将多个不同的点集成在一份代码之中 xff0c 但是嵌入式往往特别关注RAM空间 xff0c 集成过多的逻辑判断 xff0c R
  • Python的函数装饰器,@staticmethod、@classmethod 和 @property

    什么是Python 的 函数装饰器 xff1f Python 内置的 3 种函数装饰器 xff0c 分别是 xff20 staticmethod xff20 classmethod 和 64 property 那么 xff0c 函数装饰器的
  • C++11:原子交换函数compare_exchange_weak和compare_exchange_strong

    我们知道在C 43 43 11中引入了mutex和方便优雅的lock guard 但是有时候我们想要的是性能更高的无锁实现 xff0c 下面我们来讨论C 43 43 11中新增的原子操作类Atomic xff0c 我们可以利用它巧妙地实现无
  • C++11条件变量:notify_one()与notify_all()的区别

    notify one 与notify all 常用来唤醒阻塞的线程 notify one xff1a 因为只唤醒等待队列中的第一个线程 xff1b 不存在锁争用 xff0c 所以能够立即获得锁 其余的线程不会被唤醒 xff0c 需要等待再次
  • 数据库:group by 的使用

    一 概述 group by的意思是根据by对数据按照哪个字段进行分组 xff0c 或者是哪几个字段进行分组 二 语法 select 字段 from 表名 where 条件 group by 字段 或者 select 字段 from 表名 g
  • C++中 std::vector 的6种初始化方法

    1 vector lt int gt list1 默认初始化 xff0c 最常用 此时 xff0c vector为空 xff0c size为0 xff0c 表明容器中没有元素 xff0c 而且 capacity 也返回 0 xff0c 意味
  • MIMO雷达处理1

    参考文献 MIMO RADAR SIGNAL PROCESSING 以下为我自己的理解 xff0c 如有问题 xff0c 请指出 目录 初步分析虚拟阵列123 确认目标数 初步分析 MIMO radar与相控阵雷达区别在于MIMO中的各天线
  • AndroidStudio生成aar包和如何使用aar包

    我用的是android studio 2 0正式版 1 简介 aar包是Android studio下打包android工程中src res lib后生成的aar文件 xff0c aar包导入其他android studio 工程后 xff
  • C++智能指针详解:shared_ptr

    C 43 43 没有内存回收机制 xff0c 每次程序员new出来的对象需要手动delete xff0c 流程复杂时可能会漏掉delete xff0c 导致内存泄漏 于是C 43 43 引入智能指针 xff0c 可用于动态资源管理 xff0
  • C++算法题:关于树的算法

    问题1 xff1a 输入一棵二元查找树 xff0c 将该二元查找树转换成一个排序的双向链表 要求不能创建任何新的结点 xff0c 只调整指针的指向 什么是二元查找树 xff1f 比如 xff1a 转换成双向链表的顺序是 xff1a 1 3
  • C++算法题:递归和栈的算法

    问题1 xff1a 跳台阶问题 具体描述 xff0c 一个台阶总共有n级 xff0c 如果一次可以跳1级 xff0c 也可以跳2级 求总共有多少总跳法 xff0c 并分析算法的时间杂度 相当于从下往上跳 xff0c 最后剩一个 xff08
  • Linux的.service服务 实现程序开机自启

    一 service文件的位置 所有可用的单元文件存放在 lib systemd system 和 etc systemd system 目录 我们需要在 lib systemd system 下存放 service文件 xff0c 当sys
  • 计算机网络 复习提纲(完整版)

    第一章 概述 计算机网络 xff1a 利用通信线路和通信设备 xff0c 将地理位置和功能不同的多台计算机互联起来 xff0c 用完善的网络软件实现资源共享和信息传递的网络 组成 xff1a 计算机 xff0c 网络操作系统 xff0c 传
  • 无人机多任务寻径仿真软件与实验平台(一)

    项目背景 xff1a 近年来 xff0c 无人机的应用领域已经得到了极大的拓展 xff0c 旋翼无人机凭借较大的载荷 xff0c 稳定的飞行状态与对高空环境的高度适应 xff0c 成为了应用最为广泛的一类无人机 在欧洲 xff0c 北美洲等