可变形卷积从概念到实现过程

2023-05-16

可变形卷积从概念到实现过程

  • 什么是可变形卷积?
  • 为什么要可变形卷积?
  • 可变形卷积结构形式?
  • 可变形卷积的学习过程?
  • 可变形卷积如何实现?

上期回顾
卷积神经网络进阶用法—残差网络如何解决梯度消失问题

什么是可变形卷积?

可变形卷积是指卷积核在每一个元素上额外增加了一个参数方向参数,这样卷积核就能在训练过程中扩展到很大的范围。
在这里插入图片描述
上图来自论文Deformable Convolutional Networks
上图中
(a)是传统的标准卷积核,尺寸为3x3(图中绿色的点);
(b)就是我们今天要谈论的可变形卷积,通过在图(a)的基础上给每个卷积核的参数添加一个方向向量(图b中的浅绿色箭头),使的我们的卷积核可以变为任意形状;
(c)和(d)是可变形卷积的特殊形式。

为什么要可变形卷积?

我们知道卷积核的目的是为了提取输入物的特征。我们传统的卷积核通常是固定尺寸、固定大小的(例如3x3,5x5,7x7.)。这种卷积核存在的最大问题就是,对于未知的变化适应性差,泛化能力不强。

卷积单元对输入的特征图在固定的位置进行采样;池化层不断减小着特征图的尺寸;RoI池化层产生空间位置受限的RoI。网络内部缺乏能够解决这个问题的模块,这会产生显著的问题,例如,同一CNN层的激活单元的感受野尺寸都相同,这对于编码位置信息的浅层神经网络并不可取,因为不同的位置可能对应有不同尺度或者不同形变的物体,这些层需要能够自动调整尺度或者感受野的方法。再比如,目标检测虽然效果很好但是都依赖于基于特征提取的边界框,这并不是最优的方法,尤其是对于非网格状的物体而言。

解决上述问题最直观的想法就是,我们的卷积核可以根据实际情况调整本身的形状,更好的提取输入的特征。

可变形卷积结构形式?

我们知道了可变形卷积的概念和意义,下一步就是它的实现过程。
我们先上图,有个只管概念:
在这里插入图片描述
上图是可变形卷积的学习过程,首先偏差是通过一个卷积层获得,该卷积层的卷积核与普通卷积核一样。输出的偏差尺寸和输入的特征图尺寸一致。生成通道维度是2N,分别对应原始输出特征和偏移特征。这两个卷积核通过双线性插值后向传播算法同时学习。

事实上,可变形卷积单元中增加的偏移量是网络结构的一部分,通过另外一个平行的标准卷积单元计算得到,进而也可以通过梯度反向传播进行端到端的学习。加上该偏移量的学习之后,可变形卷积核的大小和位置可以根据当前需要识别的图像内容进行动态调整,其直观效果就是不同位置的卷积核采样点位置会根据图像内容发生自适应的变化,从而适应不同物体的形状、大小等几何形变。然而,这样的操作引入了一个问题,即需要对不连续的位置变量求导。作者在这里借鉴了之前Spatial Transformer Network和若干Optical Flow中warp操作的想法,使用了bilinear插值将任何一个位置的输出,转换成对于feature map的插值操作。同理,类似的想法可以直接用于 (ROI) Pooling中改进。

可变形卷积网络与传统网络结构上的区别如下图所示:
在这里插入图片描述

可变形卷积的学习过程?

在这里插入图片描述
图a是标准卷积的采样过程,图b是可变形卷积的采样过程。

我们一层层的看:
最上面的图像是在大小不同的物体上的激活单元
中间层是为了得到顶层激活单元所进行的采样过程,左图是标准的3x3方阵采样,右图是非标准形状的采样,但是采样的点依然是3x3.
最下面一层是为了得到中间层进行的采样区域。明显发现,可变形卷积在采样时可以更贴近物体的形状和尺寸,而标准卷积无法做到这一点。

可变形卷积如何实现?

上面我们说过,可变形卷积是在传统卷积的基础上,增加了调整卷积核的方向向量,使的卷积核的形态更贴近特征物。那么这个过程是如何实现的?下面我们详细说一下这个过程。

我们一开始,和正常的卷积神经网络一样,根据输入的图像,利用传统的卷积核提取特征图

我们把得到的特征图作为输入,对特征图再施加一个卷积层,这么做的目的是为了得到可变形卷积的变形的偏移量。

偏移层是2N,是因为我们在平面上做平移,需要改变 x x x值和 y y y值两个方向。

在训练的时候,用于生成输出特征的卷积核和用于生成偏移量的卷积核是同步学习的。其中偏移量的学习是利用插值算法,通过反向传播进行学习。

在这里插入图片描述
在这里插入图片描述
上图就是可变形卷积核的计算思想。真可谓是简单而不简约。

参考文章
可变形卷积Deformable Convolution Net(DCN)理解
论文阅读-可变形卷积网络:Deformable Convolutional Networks
deformable convolution(可变形卷积)算法解析及代码分析
可变形的卷积网络

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

可变形卷积从概念到实现过程 的相关文章

随机推荐

  • 在keil中使用头文件实现多文件编程

    如上图所示 xff0c 在这里 xff0c MAX7219driver c为将被包含的源文件 xff0c max7219 h为对应MAX7219driver c的头文件 xff0c 而 xff08 驱动测试 xff09 显示PZ 12234
  • PHP中使用CURL之php curl详细解析和常见大坑

    这篇文章主要介绍了PHP中使用CURL之php curl详细解析和常见大坑 xff0c 现在分享给大家 xff0c 也给大家做个参考 一起跟随小编过来看看吧 七夕啦 xff0c 作为开发 xff0c 妹子没得撩就 撩 下服务器吧 xff0c
  • KMP字符串

    给定一个字符串 S xff0c 以及一个模式串 P xff0c 所有字符串中只包含大小写英文字母以及阿拉伯数字 模式串 P 在字符串 S 中多次作为子串出现 求出模式串P在字符串S中所有出现的位置的起始下标 输入格式 第一行输入整数 N x
  • 一个简单实用的分离器件锂电池充电电路

    下面推荐一个由分离器件搭建的锂电池充电电路 xff0c 如下图 简单说明一下各器件的功能及电路原理 xff1a 简单说明一下各器件的功能及电路原理 F 43 为充电器的正极 xff0c BT 43 为电池正极 xff0c CH与单片机的一个
  • Android自定义节点进度条NodeProgressBar

    NodeProgressBar 一 简介 Android日常开发中我们可能会遇到开发一个带节点的进度条的需求 xff0c 这个需求看似简单 xff0c 实际上可以挖掘出不少东西 做的好的话也可以做成相对通用的自定义组件 二 自定义属性 sp
  • Http工具类 HttpUtils

    import java io IOException import java nio charset Charset import java security KeyManagementException import java secur
  • 【STM32基础】第二篇、STM32串口的使用

    目录 第一部分 如何取出串口接收到的数据 xff1f 第二部分 如何将串口接收的数据与目标数据进行匹配 xff1f 第三部分 串口常用的发送数据的函数 1 发送一个字符 xff08 8位 xff09 2 发送一个16位数据 xff08 16
  • 使用FlyMCU往STM32中烧写程序

    0 软硬件环境 1 操作系统 xff1a Windows 2 软件 xff1a KeilFlyMcu 3 硬件 xff1a PCSTM32最小系统开发板USB转TTL CH340G 1 生成hex文件 编写好要烧写的程序后 xff0c 点击
  • LVI-SAM安装与测试

    1 介绍 就在昨天 xff0c LVI SAM开源了 xff0c 它是一个lidar visual inertial里程计和建图系统 xff0c 在系统级别结合了LIO SAM和Vins Mono的优势 作者之前还开源了LeGO LOAM和
  • 在Ubuntu 18.04上安装Apollo 6.0

    文章目录 1 前期准备1 1 安装Ubuntu1 2 安装NVIDIA GPU驱动1 3 安装Docker Engine1 4 安装NVIDIA Container Toolkit 2 下载Apollo源文件3 启动Docker容器4 进入
  • R2LIVE安装与测试

    文章目录 1 R2LIVE2 安装依赖2 1 Ubuntu和ROS2 2 Ceres Solver2 3 livox ros driver 3 编译R2LIVE4 运行示例 1 R2LIVE R2LIVE 是一个强大的 实时的 紧密耦合的多
  • 图像标注工具labelme在WIndows系统上的安装和使用

    1 前言 labelme可对图像进行标注 xff0c 包括多边形 xff0c 矩形 xff0c 线 xff0c 点和图像级标注 它是用Python编写的 xff0c 并使用Qt作为其图形界面 详细内容见 xff1a https github
  • Windows环境使用和编译CMake记录

    以下为两种使用方式 xff0c 第一种较为简单 xff0c 第二种需提前安装vs软件 1 二进制方式安装 下载win平台的安装包 xff0c 安装解压后将bin目录添加到环境变量即可 打开命令窗口 xff0c 查看当前版本 百度云下载链接
  • 激光雷达和相机的联合标定(Camera-LiDAR Calibration)之Autoware

    1 前言 单一传感器不可避免的存在局限性 xff0c 为了提高系统的稳健性 xff0c 多采取多传感器融合的方案 xff0c 融合又包含不同传感器的时间同步和空间同步 这里要讲的激光雷达和相机的联合标定就属于空间同步范畴 另外 xff0c
  • 如何使用Keras fit和fit_generator(动手教程)

    写在前面 被Adrian Rosebrock圈粉后 xff0c 就一直期待他的更新 xff0c 作者每周一更新 xff0c 考虑到时差问题 xff08 作者在美国 xff09 xff0c 一般北京时间周二才能看到 作者根据读者留言中的问题写
  • CMake 的常用命令

    目录 0 CMake常用的命令或函数 xff1a 1 定义项目 project 2 多个目录 add subdirectory 3 常用命令 add executable add library 4 常用命令 改变最终目标文件输出位置 5
  • Libcurl的编译_HTTP/HTTPS客户端源码示例

    HTTP HTTPS客户端源码示例 环境 zlib 1 2 8 openssl 1 0 1g curl 7 36 Author Kagula LastUpdateDate 2016 05 09 阅读前提 xff1a CMake工具的基本使用
  • CNN卷积神经网络原理详解(上)

    CNN卷积神经网络原理详解 xff08 上 xff09 前言卷积神经网络的生物背景我们要让计算机做什么 xff1f 卷积网络第一层全连接层训练 前言 卷积网络 xff08 convolutional network 也叫作卷积神经网络 xf
  • 啥也不会照样看懂交叉熵损失函数

    啥也不会照样看懂交叉熵损失函数 什么是损失函数损失函数的作用有哪些损失函数交叉熵 xff08 Cross Entroy 损失函数 什么是损失函数 损失函数 loss function 是用来估量模型的预测值与真实值的不一致程度 xff0c
  • 可变形卷积从概念到实现过程

    可变形卷积从概念到实现过程 什么是可变形卷积 xff1f 为什么要可变形卷积 xff1f 可变形卷积结构形式 xff1f 可变形卷积的学习过程 xff1f 可变形卷积如何实现 xff1f 上期回顾 卷积神经网络进阶用法 残差网络如何解决梯度