rk3399下spi驱动

2023-05-16

SPI 使用

Note:本文从firefly wiki截取

SPI是一种高速的,全双工,同步串行通信接口,用于连接微控制器、传感器、存储设备等。 Firefly-RK3399 开发板提供了 SPI1 (单片选)接口,具体位置如下图: _images/spi2.jpg

SPI工作方式

SPI以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,分别是:


CS		片选信号
SCLK		时钟信号
MOSI		主设备数据输出、从设备数据输入
MISO		主设备数据输入,从设备数据输出
  

Linux内核用CPOL和CPHA的组合来表示当前SPI的四种工作模式:

CPOL=0,CPHA=0		SPI_MODE_0
CPOL=0,CPHA=1		SPI_MODE_1
CPOL=1,CPHA=0		SPI_MODE_2
CPOL=1,CPHA=1		SPI_MODE_3

CPOL:表示时钟信号的初始电平的状态,0为低电平,1为高电平。CPHA:表示在哪个时钟沿采样,0为第一个时钟沿采样,1为第二个时钟沿采样。SPI的四种工作模式波形图如下:

_images/spi1.jpg

驱动编写

下面以 W25Q128FV Flash模块为例简单介绍SPI驱动的编写。

硬件连接

Firefly-RK3399 与 W25Q128FV 硬件连接如下表:

_images/spi3.png

编写Makefile/Kconfig

在kernel/drivers/spi/Kconfig中添加对应的驱动文件配置:

config SPI_FIREFLY
       tristate "Firefly SPI demo support "
       default y
        help
          Select this option if your Firefly board needs to run SPI demo.

在kernel/drivers/spi/Makefile中添加对应的驱动文件名:

obj-$(CONFIG_SPI_FIREFLY)              += spi-firefly-demo.o

config中选中所添加的驱动文件,如:

  │ Symbol: SPI_FIREFLY [=y] 
  │ Type  : tristate
  │ Prompt: Firefly SPI demo support
  │   Location:
  │     -> Device Drivers
  │       -> SPI support (SPI [=y])
  │   Defined at drivers/spi/Kconfig:704
  │   Depends on: SPI [=y] && SPI_MASTER [=y]

配置DTS节点

在kernel/arch/arm64/boot/dts/rockchip/rk3399-firefly-demo.dtsi中添加SPI驱动结点描述,如下所示:

/* Firefly SPI demo */
&spi1 {
	spi_demo: spi-demo@00{
		status = "okay";
		compatible = "firefly,rk3399-spi";
		reg = <0x00>;
		spi-max-frequency = <48000000>;
		/* rk3399 driver support SPI_CPOL | SPI_CPHA | SPI_CS_HIGH */
		//spi-cpha;		/* SPI mode: CPHA=1 */
		//spi-cpol;   	/* SPI mode: CPOL=1 */
		//spi-cs-high;
	};
};
 
&spidev0 {
	status = "disabled";
};
  • status:如果要启用SPI,则设为okay,如不启用,设为disable。
  • spi-demo@00:由于本例子使用CS0,故此处设为00,如果使用CS1,则设为01。
  • compatible:这里的属性必须与驱动中的结构体:of_device_id 中的成员compatible 保持一致。
  • reg:此处与spi-demo@00保持一致,本例设为:0x00。
  • spi-max-frequency:此处设置spi使用的最高频率。Firefly-RK3399最高支持48000000。
  • spi-cpha,spi-cpol:SPI的工作模式在此设置,本例所用的模块SPI工作模式为SPI_MODE_0或者SPI_MODE_3,这里我们选用SPI_MODE_0,如果使用SPI_MODE_3,spi_demo中打开spi-cpha和spi-cpol即可。
  • spidev0: 由于spi_demo与spidev0使用一样的硬件资源,需要把spidev0关掉才能打开spi_demo

定义SPI驱动

在内核源码目录kernel/drivers/spi/中创建新的驱动文件,如:spi-firefly-demo.c 在定义 SPI 驱动之前,用户首先要定义变量 of_device_id 。 of_device_id 用于在驱动中调用dts文件中定义的设备信息,其定义如下所示:

static struct of_device_id firefly_match_table[] = {{ .compatible = "firefly,rk3399-spi",},{},};

此处的compatible与DTS文件中的保持一致。

spi_driver定义如下所示:

static struct spi_driver firefly_spi_driver = {
	.driver = {
		.name = "firefly-spi",
		.owner = THIS_MODULE,
		.of_match_table = firefly_match_table,},
	.probe = firefly_spi_probe,};

注册SPI设备

在初始化函数static int __init spidev_init(void)中向内核注册SPI驱动: spi_register_driver(&firefly_spi_driver);

如果内核启动时匹配成功,则SPI核心会配置SPI的参数(mode、speed等),并调用firefly_spi_probe。

读写 SPI 数据

Note:程序在文末

firefly_spi_probe中使用了两种接口操作读取W25Q128FV的ID: firefly_spi_read_w25x_id_0接口直接使用了spi_transfer和spi_message来传送数据。 firefly_spi_read_w25x_id_1接口则使用SPI接口spi_write_then_read来读写数据。

成功后会打印:

root@rk3399_firefly_box:/ # dmesg | grep firefly-spi                                                                                   
[    1.006235] firefly-spi spi0.0: Firefly SPI demo program                                                                            
[    1.006246] firefly-spi spi0.0: firefly_spi_probe: setup mode 0, 8 bits/w, 48000000 Hz max                                          
[    1.006298] firefly-spi spi0.0: firefly_spi_read_w25x_id_0: ID = ef 40 18 00 00                                                     
[    1.006361] firefly-spi spi0.0: firefly_spi_read_w25x_id_1: ID = ef 40 18 00 00

打开SPI demo

spi-firefly-demo默认没有打开,如果需要的话可以使用以下补丁打开demo驱动:

--- a/kernel/arch/arm64/boot/dts/rockchip/rk3399-firefly-demo.dtsi
+++ b/kernel/arch/arm64/boot/dts/rockchip/rk3399-firefly-demo.dtsi
@@ -64,7 +64,7 @@ /* Firefly SPI demo */
 &spi1 {spi_demo: spi-demo@00{
 -                status = "disabled";
 +               status = "okay";
                   compatible = "firefly,rk3399-spi";
                   reg = <0x00>;
                   spi-max-frequency = <48000000>;
 @@ -76,6 +76,6 @@
  }; 
  
   &spidev0 {
   -       status = "okay";
   +       status = "disabled";
 };

常用SPI接口

下面是常用的 SPI API 定义:

void spi_message_init(struct spi_message *m); 
void spi_message_add_tail(struct spi_transfer *t, struct spi_message *m); 
int spi_sync(struct spi_device *spi, struct spi_message *message) ; 
int spi_write(struct spi_device *spi, const void *buf, size_t len); 
int spi_read(struct spi_device *spi, void *buf, size_t len); 
ssize_t spi_w8r8(struct spi_device *spi, u8 cmd); 
ssize_t spi_w8r16(struct spi_device *spi, u8 cmd); 
ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd); 
int spi_write_then_read(struct spi_device *spi, const void *txbuf, unsigned n_tx, void *rxbuf, unsigned n_rx);

接口使用

Linux提供了一个功能有限的SPI用户接口,如果不需要用到IRQ或者其他内核驱动接口,可以考虑使用接口spidev编写用户层程序控制SPI设备。 在 Firefly-RK3399 开发板中对应的路径为: /dev/spidev0.0

spidev对应的驱动代码: kernel/drivers/spi/spidev.c

内核config需要选上SPI_SPIDEV:

 │ Symbol: SPI_SPIDEV [=y]
 │ Type  : tristate
 │ Prompt: User mode SPI device driver support 
 │   Location:
 │     -> Device Drivers
 │       -> SPI support (SPI [=y])
 │   Defined at drivers/spi/Kconfig:684
 │   Depends on: SPI [=y] && SPI_MASTER [=y]

DTS配置如下:

&spi1 {
    status = "okay";
    max-freq = <48000000>;  
    spidev@00 {
        compatible = "linux,spidev";
        reg = <0x00>;
        spi-max-frequency = <48000000>;
    };
};

FAQs

Q1: SPI数据传送异常

A1: 确保 SPI 4个引脚的 IOMUX 配置正确, 确认 TX 送数据时,TX 引脚有正常的波形,CLK 频率正确,CS 信号有拉低,mode 与设备匹配。

程序清单:

/*
 * Driver for pwm demo on Firefly board.
 *
 * Copyright (C) 2016, Zhongshan T-chip Intelligent Technology Co.,ltd.
 * Copyright 2006  Sam Chan
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define DEBUG
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
#define FIREFLY_SPI_READ_ID_CMD 0x9F
#define FIREFLY_SPI_PRINT_ID(rbuf) \
	do { \
		if (status == 0) \
			dev_dbg(&spi->dev, "%s: ID = %02x %02x %02x %02x %02x\n", __FUNCTION__, \
				rbuf[0], rbuf[1], rbuf[2], rbuf[3], rbuf[4]); \
		else \
			dev_err(&spi->dev, "%s: read ID error\n", __FUNCTION__); \
	}while(0)
static int firefly_spi_read_w25x_id_0(struct spi_device *spi)
{	
	int	status;
	char tbuf[]={FIREFLY_SPI_READ_ID_CMD};
	char rbuf[5];
	struct spi_transfer	t = {
		.tx_buf		= tbuf,
		.len		= sizeof(tbuf),
	};
	struct spi_transfer     r = {
		.rx_buf         = rbuf,
		.len            = sizeof(rbuf),
	};
	struct spi_message      m;
	spi_message_init(&m);
	spi_message_add_tail(&t, &m);
	spi_message_add_tail(&r, &m);
	status = spi_sync(spi, &m);
	FIREFLY_SPI_PRINT_ID(rbuf);
	return status;
}
static int firefly_spi_read_w25x_id_1(struct spi_device *spi)
{
	int	status;
	char tbuf[] = {FIREFLY_SPI_READ_ID_CMD};
	char rbuf[5];
	status = spi_write_then_read(spi, tbuf, sizeof(tbuf), rbuf, sizeof(rbuf));
	
	FIREFLY_SPI_PRINT_ID(rbuf);
	return status;
}
static int firefly_spi_probe(struct spi_device *spi)
{
    int ret = 0;
    struct device_node __maybe_unused *np = spi->dev.of_node;
    dev_dbg(&spi->dev, "Firefly SPI demo program\n");
	if(!spi)	
		return -ENOMEM;
	dev_dbg(&spi->dev, "firefly_spi_probe: setup mode %d, %s%s%s%s%u bits/w, %u Hz max\n",
			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
			(spi->mode & SPI_LOOP) ? "loopback, " : "",
			spi->bits_per_word, spi->max_speed_hz);
	firefly_spi_read_w25x_id_0(spi);
	firefly_spi_read_w25x_id_1(spi);
	
    return ret;
}
static struct of_device_id firefly_match_table[] = {
	{ .compatible = "firefly,rk3399-spi",},
	{},
};
static struct spi_driver firefly_spi_driver = {
	.driver = {
		.name = "firefly-spi",
		.owner = THIS_MODULE,
		.of_match_table = firefly_match_table,
	},
	.probe = firefly_spi_probe,
};
static int firefly_spi_init(void)
{
	return spi_register_driver(&firefly_spi_driver);
}
module_init(firefly_spi_init);
static void firefly_spi_exit(void)
{
	spi_unregister_driver(&firefly_spi_driver);
}
module_exit(firefly_spi_exit);
MODULE_AUTHOR("zhansb <service@t-firefly.com>");
MODULE_DESCRIPTION("Firefly SPI demo driver");
MODULE_ALIAS("platform:firefly-spi");
MODULE_LICENSE("GPL");

看一下读写函数吧:

static int firefly_spi_read_w25x_id_0(struct spi_device *spi)
{	
	int	status;
	char tbuf[]={FIREFLY_SPI_READ_ID_CMD};
	char rbuf[5];
	struct spi_transfer	t = {
		.tx_buf		= tbuf,
		.len		= sizeof(tbuf),
	};
	struct spi_transfer     r = {
		.rx_buf         = rbuf,
		.len            = sizeof(rbuf),
	};
	struct spi_message      m;
	spi_message_init(&m);
	spi_message_add_tail(&t, &m);
	spi_message_add_tail(&r, &m);
	status = spi_sync(spi, &m);
	FIREFLY_SPI_PRINT_ID(rbuf);
	return status;
}

是不是和IIC的很像,来做一下对比:

static int read_reg(const struct i2c_client *client, unsigned int *buf , unsigned char address)
{
	struct i2c_msg msg[2];
	int ret;
	unsigned char date1[2];
 
	msg[0].addr  = client->addr;  
	msg[0].buf   = &address;              
	msg[0].len   = 1;                     
	msg[0].flags = 0;                   
 
	msg[1].addr  = client->addr; 
	msg[1].buf   = date1;                 
	msg[1].len   = 2;                    
	msg[1].flags = I2C_M_RD;                   
 
	ret = i2c_transfer(client->adapter, msg, 2);
	if (ret > 0)
	{
		printk(KERN_INFO "date1 : %d date1 :%d\n",date1[0],date1[1]);
		*buf = (date1[0] << 8) | (date1[1]); 
		return 1;
	}
	else
		return -EIO;
}

spi的总体框架从大体上应该和iic差不多吧,以后分析了如果说的不对,再来修改

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

rk3399下spi驱动 的相关文章

  • 关于I2C和SPI总线协议

    关于I2C和SPI总线协议 IICvs SPI 现今 xff0c 在低端数字通信应用领域 xff0c 我们随处可见IIC Inter Integrated Circuit 和 SPI Serial Peripheral Interface
  • spi,iic,uart,pcie区别

    一 spi SPI 是英语Serial Peripheral interface的缩写 xff0c 顾名思义就是串行外围设备接口 xff0c 是同步传输协议 xff0c 特征是 xff1a 设备有主机 xff08 master xff09
  • 52、人脸检测部署RK3399 PRO,完成RKNN的人脸检测

    基本思想 xff1a 帮助好友部署一个人脸检测模型 xff0c 也是自己业务需求 xff0c 部分代码来自好友陈同学 xff0c 自己改了改c 43 43 的代码可以部署rk3399pro上了 xff0c 其它资料见附录吧 xff0c 官方
  • STM32—cubeMX+HAL库的SPI接口使用

    摘要 xff1a 本文主要介绍STM32的SPI接口 cubeMX软件配置SPI接口和分析SPI相关代码 STM32之SPI简介 xff1a xff08 1 xff09 SPI协议 Serial Peripheral Interface 串
  • 基于I2C/SPI的温湿度采集与OLED显示

    基于I2C SPI的温湿度采集与OLED显示 一 AHT20温湿度采集1 I2C2 温湿度采集代码效果 二 OLED显示1 显示学号姓名2 诗句显示 三 总结四 参考 一 AHT20温湿度采集 1 I2C 解释什么是 软件I2C 和 硬件I
  • SPI通信协议详解

    SPI是Serial Peripheral Interface的缩写 xff0c 意即串行外设接口 SPI是一种高速的 全双工 同步通信总线 xff0c 常用于处理器与板载外设 xff08 比如Flash存储器 实时时钟芯片 AD DA芯片
  • day3. -2 NX的SPI操作

    1 NVIDIA在线文档 https docs nvidia com jetson l4t index html page Tegra 20Linux 20Driver 20Package 20Development 20Guide hw
  • rk3399下pwm驱动

    现在记录一下rk3399下pwm的驱动编写 xff0c 下面是内核pwm的API xff0c 从开源论坛复制 xff08 firefly的开源论坛里面的Wiki教程 xff09 1 在要使用 PWM 控制的设备驱动文件中包含以下头文件 xf
  • nRF SPI 与 TWI 操作相关 (BMI088 与 MLX90614 举例)

    SPI0 与 TWI0 的 ID相同 xff0c SPI0 与 TWI0 的 ID相同 编译时有报错 若要避免 xff0c 有两个方法 1 使用不同ID外设 2 使用模拟SPI或模拟IIC nRF SPI 初始化 sdk config h
  • UART,SPI,IIC,RS232通信时序和规则

    一 UART 1 串口通信方式 2 串口通信步骤 注意 xff1a 串口协议规定 xff0c 闲置时必须是高电平 校验位 xff1a 是使用奇偶校验 停止位必须高电平 一个0和多个0区分是靠掐时间 异步通信 xff1a 时钟各不一样 二 I
  • Jlink使用技巧之烧写SPI Flash存储芯片

    文章目录 前言 准备 硬件连接 1 打开 2 连接SPI Flash芯片 3 打开程序文件 4 下载 5 程序文件的读取 6 程序文件的保存 7 命令行工具的使用 支持的芯片列表 速度说明 参考资料 JLink软件的下载 前言 大多数玩单片
  • 使用Linux内核里的spi屏驱动-fbtft

    Linux内核里已经提供spi接口小屏的设备驱动 在内核的配置选项 make menuconfig ARCH arm CROSS COMPILE arm linux gnueabihf Device Drivers gt Graphics
  • SPI接口详细介绍

    1 概述 SPI Serial Peripheral Interface 是串行外围设备接口 是一种高速 全双工 同步的通信总线 常规只占用四根线 节约了芯片管脚 PCB的布局省空间 现在越来越多的芯片集成了这种通信协议 常见的有EEPRO
  • Spring Factories

    该文章转载自 https blog csdn net lvoyee article details 82017057 Spring Boot中有一种非常解耦的扩展机制 Spring Factories 这种扩展机制实际上是仿照Java中的S
  • Linux内核自带SPI设备驱动测试程序分析:spidev_test.c

    在Linux系统中 SPI 的用户模式设备接口的驱动源码位于 drivers spi spidev c 在应用层生成 dev spidev 的节点 可以通过 read write 达到与硬件设备的 SPI 通信 下面介绍spidev驱动移植
  • 钉钉F1 RK3399 咸鱼80元板子使用记录

    1 简单介绍 12V电源 建议2A 默认插电不开机 有大佬找到金属罩下的焊盘 短接可上电开机 在usb旁边的旁边有个端子接口 短接就可以开机 建议找个一样大的接口接个开关 到目前为止还未测试需要哪种接口 其它接口暂时不知 谁舍得拆一个钉钉F
  • 难懂?这样理解SPI与CAN很简单!

    难懂 这样理解SPI与CAN很简单 什么是串行通讯 为什么仍需使用串行通讯 SPI与CAN SPI 接口特点 CAN现场总线特点 什么是串行通讯 在正式进入主题前 我么先来介绍一下什么叫做 串行通信 串行通信是计算机的一种数据传输通信方式
  • Linux,spidev:为什么它不应该直接在设备树中?

    我想定义一个具有用户模式访问权限的 SPI 设备 如中所述http linux sunxi org SPIdev 按照这些示例 我在设备树中添加了以下内容 ecspi1 other stuff mydev 0 compatible spid
  • 树莓派 pico rfid rc522 (Micropython)

    我想使用 RPi Pico 从 mfrc522 Iduino RFID rc522 读卡器读取数据 但我不知道如何操作 我试图使用为此目的制作的 mfrc522 py MicroPython 库 阅读器正在通过 SPI 与 Pi 通信 我将
  • STM32 传输结束时,循环 DMA 外设到存储器的行为如何?

    我想问一下 在以下情况下 STM32 中的 DMA SPI rx 会如何表现 我有一个指定的 例如 96 字节数组 名为 A 用于存储从 SPI 接收到的数据 我打开循环 SPI DMA 它对每个字节进行操作 配置为 96 字节 是否有可能

随机推荐

  • 2021校招_满帮(运满满)

    一面 xff08 电话面 xff09 xff1a 25min 1 询问HashMap相关结构以及原理 2 红黑树的基本结构 xff0c 以及什么时候会LL xff08 左转 xff09 3 Spring如何解决循环依赖的 4 Redis缓存
  • 2021校招_思科

    思科给我发的太晚了 xff0c 十一月份才给我消息 思科一面凉凉 主要是针对你的简历 问到我的主要内容包括 xff1a 数据库设计 xff0c 是否使用到设计模式 xff0c 以及遇到问题如何解决 包括ngnix xff0c redis h
  • 音视频开发之音频基础知识

    音视频开发之音频基础知识 转自https blog jianchihu net av develop audio basis html 什么是声音 介质振动在听觉系统中产生的反应 是一种波 因为是一种波 xff0c 所以我们可以用频率 振幅
  • 机器学习中神经网络,支持向量机以及贝叶斯分类器总结

    第五章神经网络 5 1神经元模型 神经网络中最基本的成分是神经元模型 xff0c 即 简单单元 在 M P神经元模型 中 xff0c 神经元接受收到来自n个其他神经元传递过来的输入信号 xff0c 这些输入信号经过带权重的连接进行传递 xf
  • 机器学习中的降维与度量学习(reduce dimension and metric learning)

    降维与度量学习 k近邻学习 k近邻 k Nearest Neighbor 简称kNN 学习是一种监督学习方法 其工作机制为 xff1a 在样本中 xff0c 根据距离度量找出训练集中临近的k个样本 xff0c 基于这k个样本进行预测 一般
  • Warning: Invalid argument “/map“ passed to canTransform argument target_frame in tf2 frame_ids···

    Warning Invalid argument map passed to canTransform argument target frame in tf2 frame ids cannot start with a like at l
  • CAN为什么会发送失败

    CAN总线调试过程中出现报文发送失败 xff0c 很多工程师都对此只知其一不知其二 xff0c 这里就CAN报文发送失败的问题我们来做一次探讨 在了解CAN报文为什么会发送失败之前我们先看看一条正确的CAN报文到底应该是怎么样的 xff0c
  • git分支和tag

    分支管理 查看当前分支 git branch创建分支 git branch git branch index one切换分支 git checkout lt 分支名称 xff0c 主分支是master gt git checkout ind
  • TT无人机扩展模块库分析(default.ino)补篇2

    这个简单 请对照 因为源码在这里出现了和手柄相关的源码 设置tof传感器的超时时间 xff08 500 xff09 什么单位 xff1f 没有搜索到 xff0c 我用SI了 搜索到了 有很多函数 定位位置 在这里 找到了 xff0c 为什么
  • TCP建立连接的过程

    TCP是面向连接的 可靠的 基于字节流的传输层协议 xff0c 是TCP IP协议中最重要的协议之一了 我们都知道TCP通过三次握手建立连接 xff0c 那么每一次握手的作用 为什么要三次握手 如果某次握手丢包会发生什么呢 xff1f 文章
  • CANanlystII 基于linux的二次开发实践

    1 USBCAN分析仪国内现状 这是目前国内市场上的USBCAN分析仪现状 2 创芯科技产品 创芯科技的这个红色盒子是我比较下来综合性价比最高的 同时支持windows和linux的设备只要320元左右 你既可以用可视化界面发送 接收报文
  • AXI DMA总结、内核axidmatest.c测试程序分析、SG mode

    AXI DMA 概述 xff1a XILINX提供的AXI DMA支持Scatter Gather mode和Direct Register mode 数据位宽支持32 64 128 256 512 1024bits xff0c strea
  • ZYNQ 平台 AD9361实现网络通信的一种方案+网卡驱动分析及实现

    声明 xff1a 文中若有不合理的地方 xff0c 欢迎讨论学习及指正 xff0c 本文仅仅涉及软件部分的代码 xff0c 不阐述逻辑代码的实现 功能 xff1a 通过AD9361芯片实现无线组网 xff0c 能实现视频 文件 音频等传输
  • MTD分析

    概述 xff1a 本文对mtd的整个结构进行了分析 xff0c 分析得并非很深入 xff0c 但可以了解大体框架和目录结构 xff0c 另外本文会对源码文件进行分析 xff0c 大致描述其作用 xff0c 针对本文的内容中 xff0c 如有
  • CAN总线详解(转)

    1 简介 CAN是控制器局域网络 Controller Area Network CAN 的简称 xff0c 是一种能够实现分布式实时控制的串行通信网络 优点 xff1a 传输速度最高到1Mbps xff0c 通信距离最远到10km xff
  • Linux Socket CAN——驱动开发(转)

    Linux Socket CAN驱动开发 一 CAN总线协议 CAN是Controller Area Network 控制器局域网 的缩写 CAN通信协议在1986年由德国电气商博世公司所开发 xff0c 主要面向汽车的通信系统 现已是IS
  • Joint state with name: “base_l_wheel_joint” was received but not found in URDF

    ROS melodic下运行出现 WARN xff1a Joint state with name base l wheel joint was received but not found in URDF 原因是在robot描述文件URD
  • 已解决 vmware 虚拟机安装后没有虚拟网卡问题

    我用的方法是重装vmware xff0c 使用的是win10的系统 之前安装网ubuntu以后 xff0c 发现主机并没有虚拟网卡 xff0c 也百度了各种方法 xff0c 然而并没有什么用 xff0c 也问了很多人 xff0c 他们也提供
  • rk3399下pwm驱动

    现在记录一下rk3399下pwm的驱动编写 xff0c 下面是内核pwm的API xff0c 从开源论坛复制 xff08 firefly的开源论坛里面的Wiki教程 xff09 1 在要使用 PWM 控制的设备驱动文件中包含以下头文件 xf
  • rk3399下spi驱动

    SPI 使用 Note xff1a 本文从firefly wiki截取 SPI是一种高速的 xff0c 全双工 xff0c 同步串行通信接口 xff0c 用于连接微控制器 传感器 存储设备等 Firefly RK3399 开发板提供了 SP