五分钟读懂TCP 协议——TCP协议简介

2023-05-16

TCP 是互联网核心协议之一,本文介绍它的基础知识。


一、TCP 协议的作用

互联网由一整套协议构成。TCP 只是其中的一层,有着自己的分工。

这里写图片描述

(图片说明:TCP 是以太网协议和 IP 协议的上层协议,也是应用层协议的下层协议。)

最底层的以太网协议(Ethernet)规定了电子信号如何组成数据包(packet),解决了子网内部的点对点通信。

这里写图片描述

(图片说明:以太网协议解决了局域网的点对点通信。)

但是,以太网协议不能解决多个局域网如何互通,这由 IP 协议解决。

这里写图片描述

(图片说明:IP 协议可以连接多个局域网。)

IP 协议定义了一套自己的地址规则,称为 IP 地址。它实现了路由功能,允许某个局域网的 A 主机,向另一个局域网的 B 主机发送消息。

这里写图片描述

(图片说明:路由器就是基于 IP 协议。局域网之间要靠路由器连接。)

路由的原理很简单。市场上所有的路由器,背后都有很多网口,要接入多根网线。路由器内部有一张路由表,规定了 A 段 IP 地址走出口一,B 段地址走出口二,……通过这套”指路牌”,实现了数据包的转发。

这里写图片描述

图片说明:本机的路由表注明了不同 IP 目的地的数据包,要发送到哪一个网口(interface)。)

IP 协议只是一个地址协议,并不保证数据包的完整。如果路由器丢包(比如缓存满了,新进来的数据包就会丢失),就需要发现丢了哪一个包,以及如何重新发送这个包。这就要依靠 TCP 协议。

简单说,TCP 协议的作用是,保证数据通信的完整性和可靠性,防止丢包。

二、TCP 数据包的大小

以太网数据包(packet)的大小是固定的,最初是1518字节,后来增加到1522字节。其中, 1500 字节是负载(payload),22字节是头信息(head)。

IP 数据包在以太网数据包的负载里面,它也有自己的头信息,最少需要20字节,所以 IP 数据包的负载最多为1480字节。

这里写图片描述

(图片说明:IP 数据包在以太网数据包里面,TCP 数据包在 IP 数据包里面。)

TCP 数据包在 IP 数据包的负载里面。它的头信息最少也需要20字节,因此 TCP 数据包的最大负载是 1480 - 20 = 1460 字节。由于 IP 和 TCP 协议往往有额外的头信息,所以 TCP 负载实际为1400字节左右。

因此,一条1500字节的信息需要两个 TCP 数据包。HTTP/2 协议的一大改进, 就是压缩 HTTP 协议的头信息,使得一个 HTTP 请求可以放在一个 TCP 数据包里面,而不是分成多个,这样就提高了速度。

这里写图片描述

(图片说明:以太网数据包的负载是1500字节,TCP 数据包的负载在1400字节左右。)

三、TCP 数据包的编号(SEQ)

一个包1400字节,那么一次性发送大量数据,就必须分成多个包。比如,一个 10MB 的文件,需要发送7100多个包。

发送的时候,TCP 协议为每个包编号(sequence number,简称 SEQ),以便接收的一方按照顺序还原。万一发生丢包,也可以知道丢失的是哪一个包。

第一个包的编号是一个随机数。为了便于理解,这里就把它称为1号包。假定这个包的负载长度是100字节,那么可以推算出下一个包的编号应该是101。这就是说,每个数据包都可以得到两个编号:自身的编号,以及下一个包的编号。接收方由此知道,应该按照什么顺序将它们还原成原始文件。

这里写图片描述

(图片说明:当前包的编号是45943,下一个数据包的编号是46183,由此可知,这个包的负载是240字节。)

四、TCP 数据包的组装

收到 TCP 数据包以后,组装还原是操作系统完成的。应用程序不会直接处理 TCP 数据包。

对于应用程序来说,不用关心数据通信的细节。除非线路异常,收到的总是完整的数据。应用程序需要的数据放在 TCP 数据包里面,有自己的格式(比如 HTTP 协议)。

TCP 并没有提供任何机制,表示原始文件的大小,这由应用层的协议来规定。比如,HTTP 协议就有一个头信息Content-Length,表示信息体的大小。对于操作系统来说,就是持续地接收 TCP 数据包,将它们按照顺序组装好,一个包都不少。

操作系统不会去处理 TCP 数据包里面的数据。一旦组装好 TCP 数据包,就把它们转交给应用程序。TCP 数据包里面有一个端口(port)参数,就是用来指定转交给监听该端口的应用程序。

这里写图片描述

(图片说明:系统根据 TCP 数据包里面的端口,将组装好的数据转交给相应的应用程序。上图中,21端口是 FTP 服务器,25端口是 SMTP 服务,80端口是 Web 服务器。)

应用程序收到组装好的原始数据,以浏览器为例,就会根据 HTTP 协议的Content-Length字段正确读出一段段的数据。这也意味着,一次 TCP 通信可以包括多个 HTTP 通信。

五、慢启动和 ACK

服务器发送数据包,当然越快越好,最好一次性全发出去。但是,发得太快,就有可能丢包。带宽小、路由器过热、缓存溢出等许多因素都会导致丢包。线路不好的话,发得越快,丢得越多。

最理想的状态是,在线路允许的情况下,达到最高速率。但是我们怎么知道,对方线路的理想速率是多少呢?答案就是慢慢试。

TCP 协议为了做到效率与可靠性的统一,设计了一个慢启动(slow start)机制。开始的时候,发送得较慢,然后根据丢包的情况,调整速率:如果不丢包,就加快发送速度;如果丢包,就降低发送速度。

Linux 内核里面设定了(常量TCP_INIT_CWND),刚开始通信的时候,发送方一次性发送10个数据包,即”发送窗口”的大小为10。然后停下来,等待接收方的确认,再继续发送。

默认情况下,接收方每收到两个 TCP 数据包,就要发送一个确认消息。”确认”的英语是 acknowledgement,所以这个确认消息就简称 ACK。

ACK 携带两个信息。

期待要收到下一个数据包的编号

接收方的接收窗口的剩余容量
  • 1
  • 2
  • 3

发送方有了这两个信息,再加上自己已经发出的数据包的最新编号,就会推测出接收方大概的接收速度,从而降低或增加发送速率。这被称为”发送窗口”,这个窗口的大小是可变的。

这里写图片描述

(图片说明:每个 ACK 都带有下一个数据包的编号,以及接收窗口的剩余容量。双方都会发送 ACK。)

注意,由于 TCP 通信是双向的,所以双方都需要发送 ACK。两方的窗口大小,很可能是不一样的。而且 ACK 只是很简单的几个字段,通常与数据合并在一个数据包里面发送。

这里写图片描述

图片说明:上图一共4次通信。第一次通信,A 主机发给B 主机的数据包编号是1,长度是100字节,因此第二次通信 B 主机的 ACK 编号是 1 + 100 = 101,第三次通信 A 主机的数据包编号也是 101。同理,第二次通信 B 主机发给 A 主机的数据包编号是1,长度是200字节,因此第三次通信 A 主机的 ACK 是201,第四次通信 B 主机的数据包编号也是201。)

即使对于带宽很大、线路很好的连接,TCP 也总是从10个数据包开始慢慢试,过了一段时间以后,才达到最高的传输速率。这就是 TCP 的慢启动。

六、数据包的遗失处理

TCP 协议可以保证数据通信的完整性,这是怎么做到的?

前面说过,每一个数据包都带有下一个数据包的编号。如果下一个数据包没有收到,那么 ACK 的编号就不会发生变化。

举例来说,现在收到了4号包,但是没有收到5号包。ACK 就会记录,期待收到5号包。过了一段时间,5号包收到了,那么下一轮 ACK 会更新编号。如果5号包还是没收到,但是收到了6号包或7号包,那么 ACK 里面的编号不会变化,总是显示5号包。这会导致大量重复内容的 ACK。

如果发送方发现收到三个连续的重复 ACK,或者超时了还没有收到任何 ACK,就会确认丢包,即5号包遗失了,从而再次发送这个包。通过这种机制,TCP 保证了不会有数据包丢失。

这里写图片描述

(图片说明:Host B 没有收到100号数据包,会连续发出相同的 ACK,触发 Host A 重发100号数据包。)

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

五分钟读懂TCP 协议——TCP协议简介 的相关文章

  • kl-waterfall 瀑布流

    文章目录 使用实现waterfall index文件kl waterfall item 使用 span class token operator lt span kl span class token operator span water
  • kl-anchor(vue锚点组件)

    文章目录 示例功能描述存在问题 使用实现 示例 功能描述 点击左侧导航栏 xff0c 右侧能滚动到指定的位置右侧滚动 xff0c 左侧能自动选中 存在问题 多次监听直接绑定滚动到了body 优化版本链接 使用 这儿是结合element ui
  • 银行家算法原理

    银行家算法原理
  • python 深度学习[数学基础-1-函数,极限]

    文章目录 函数 函数
  • python 深度学习-数学基础-2-导数

    z z的变化值比上距离的极限
  • python 深度学习-数学基础-3-微积分

  • rt-thread CAN通信(can dev write data failed!)解决,硬件定时器、以及CANfestival包的使用

    本文采用正点原子STM32f407ZGT6探索者 关于rtt的CAN通信配置可以参考RT Thread studio 添加CAN通信功能 按上面配置完成后串口会打印下图所示问题 xff1a xff08 can dev write data
  • (二)STM32串口总结(库函数版)

    一 STM32F103有两个串口 图中 TXD RXD 是相对 CH340G 来说的 xff0c 也就是 USB 串口的发送和接收引脚 而 USART1 RX 和 USART1 TX 则是相对于 STM32F103ZET6 来说的 也就是说
  • Matlab画图 线条的颜色、宽度等相关设置

    线条的属性有 xff1a Color 颜色 LineWidth 线条宽度 LineStyle 线型 LineJoin 线条边角的样式 AlignVertexCenters 锐化垂直线和水平线 线条属性的默认值为 0 0 0 39 39 39
  • 一、图像预处理

    四种图像的基本数据结构 xff1a Image 指Halcon的图像类型 Region 指图像中的一块区域 XLD 指图像中某一块区域的轮廓 Tuple 类似于数组 xff0c 用于存储一幅或多幅图像 内核矩阵的选择 xff1a 核越大越模
  • halcon边缘检测

    边缘检测 Ronny丶 博客园 寻找边缘的传统方法 xff0c 即图像中的暗 光转换 xff0c 是应用边缘滤波器 这些滤光器可以在光和暗区域的边界找到像素 从数学术语中来说 xff0c 这意味着这些滤波器决定了图像的梯度 此图像渐变通常作
  • ZED双目摄像头

    ZED stereol abs 配置踩过的坑 现在种树也不晚 博客园 介绍 xff1a CUDA CUDA 是 ZED SDK 使用的 NVIDIA 库 xff0c 用于在显卡上运行快速 AI 和计算机视觉任务 在 ZED SDK 安装过程
  • linux---五种高级IO模型

    阻塞IO模型非阻塞IO模型信号驱动IO模型异步IO模型多路转接IO模型高级IO重要概念 阻塞IO模型 在内核将数据准备好 xff0c 系统调用会一直等待 xff0c 所有的套接字默认都是阻塞IO方式 阻塞IO是最常见的IO模型 非阻塞IO模
  • Ubuntu错误处理集

    1 W GPG 错误 xff1a https developer download nvidia com compute cuda repos ubuntu1604 x86 64 Release 由于没有公钥 xff0c 无法验证下列签名
  • Linux下配置虚拟CAN

    1 加载vcan模块 sudo modprobe vcan 2 添加vcan0网卡 sudo ip link add dev vcan0 type vcan 3 查看当前CAN网络 ifconfig a 4 开启vcan0 sudo ip
  • ROS基础

    一 ROS的核心概念 节点 xff1a 节点管理器 xff1a 话题 xff1a 消息 xff1a 服务 xff1a 参数 xff1a 二 命令行工具的使用 命令行工具都是以ros开头的 常用命令 rostopicrosserviceros
  • Linux下编译Opencv和contrib

    1 安装准备 1 1 安装依赖项 sudo apt get install cmake sudo apt get install build essential libgtk2 0 dev libavcodec dev libavforma
  • YOLOv5和YOLOv7环境(GPU)搭建测试成功

    本来是用doc写的 xff0c 直接复制到这里很多图片加载缓慢 xff0c 我直接把doc上传到资源里面了 xff0c 0积分下载 xff1a 10条消息 YOLOv5和YOLOv7开发环境搭建和demo运行 Python文档类资源 CSD
  • 单片机通信总述——理论部分(CAN、串口、SPI、I2C等)

    一 基础概念 1 1 通信方法 并行通信 xff1a 传输原理 xff1a 数据各个位同时传输 xff1b 优点 xff1a 速度快 xff1b 缺点 xff1a 占用引脚资源多 是指使用 8 16 32 及 64 根或更多的数据线 有多少
  • Ubuntu系统搭建

    一 创建环境常见问题 1 1 windows11下打开虚拟机蓝屏问题 参考这篇文章 xff0c 控制面板 xff0c 启用和关闭windows功能 xff08 对话框 xff09 113条消息 VMware安装Ubuntu开启蓝屏解决方案

随机推荐

  • J-Link工具查看单片机内存等信息

    1 打开下图应用 2 输入 connect xff08 连接开发板 xff09 AC78013FDLA xff08 你的单片机型号 xff09 SWD xff08 仿真器接口 xff09 1000HZ xff08 接口速度 xff09 连接
  • Qt调用ffmpeg动态库和静态库及编译ffmpeg的方法

    一 编译 二 引入ffmpeg库文件 1 Qt工程下创建lib文件夹 xff0c lib文件夹下再创建ffmepg文件夹 2 将编译好的ffmpeg里面的include 和lib文件夹粘贴到如下文件夹下 xff08 3 xff09 在 pr
  • autoware花屏重影问题

    autoware 安装 花屏 重影问题 最近尝试下autoware来做建图 xff0c 无奈各类安装太过麻烦 xff0c 这里给几个小问题做下纪律 1 xff0c 安装过程 xff0c 走的官网那个 xff0c 事实证明官网教程最全面 xf
  • linux---select,poll,epoll的原理以及优缺点

    多路转接IO xff08 也叫IO多路复用 xff09 是一种处理高并发的IO事件监控 xff0c 同时对大量的描述符进行时间监控 xff0c 监控是否具备IO条件 就绪 xff1a 包括了读就绪事件 xff08 就是有数据到来的时候 xf
  • DTAM实现

    DTAM实现 这里是实现github上DTAM的一次记录 xff0c 主要是有些步骤的记录 需要下载的源码 xff08 可以多试试几个 xff0c 按照实现可能性排序 xff09 xff1a https github com Teddybe
  • jetson镜像克隆到固态再扩容简单方法

    jetson克隆方法很多 xff0c 我是自己把之前的sd镜像克隆做成img镜像了 然后烧写后之前是64g的后续烧写都是64g的不能把新的储存设备占满 这里有一个扩容和移植到固态的方法 主要分三步 xff1a 镜像克隆和烧录到sd卡使用固态
  • Orb_slam3 ROS ,D435i使用,ubuntu编译小记

    C 43 43 版本编译 先官网下载代码 xff0c 并下载安装官网所述安装包 git clone https github com UZ SLAMLab ORB SLAM3 git ORB SLAM3 下载完编译c 43 43 版本 cd
  • d455双目相机联合IMU标定

    感谢这两位博主的优秀文章 xff1a RealSense D455的标定并运行VINS FUSION Z Jin16的博客 CSDN博客 d455 标定 Realsense D435I标定 小岛 神酱的博客 CSDN博客 d435i参数 主
  • gitee发布示例

    简易的命令行入门教程 Git 全局设置 git config global user name 34 bnb 34 git config global user email 34 2207201665 64 qq com 34 创建 git
  • linux终端快捷指令创建

    使用这个打开gedit bashrc xff0c 把下面的按照下面的格式书写 xff1a alias lt 想要的快捷键 gt 61 操作指令 示例 xff1a alias sd 61 39 source devel setup sh 39
  • 使用vscode做得基础配置自动保存格式化

    vscode默认启用了根据文件类型自动设置tabsize的选项 34 editor detectIndentation 34 false 重新设定tabsize 34 editor tabSize 34 2 每次保存的时候自动格式化 34
  • OOQP 使用教程 c++

    最近学习了一下OOQP的使用在这里记录一下 在matlab代码中是quadprog xff0c 而这次使用OOQP也主要是为了计算二次规划问题 安装OOQP 首先是安装问题 xff0c 不得不说 xff0c 当时安装也花了不少时间 xff0
  • 物联网工程 | CAN(Controller Area Network)控制器局域网络答疑

    文章目录 概述一 CAN的物理设备二 CAN的物理传输三 CAN的多设备连接四 CAN编程 概述 本节以问答方式讲述CAN相关的一些疑点问题 一 CAN的物理设备 问 xff1a CAN需要什么样的物理设备支持才能算一个CAN网络 系统 x
  • 【无标题】

    前言 对于喜欢逛CSDN的人来说 xff0c 看别人的博客确实能够对自己有不小的提高 xff0c 有时候看到特别好的博客想转载下载 xff0c 但是不能一个字一个字的敲了 xff0c 这时候我们就想快速转载别人的博客 xff0c 把别人的博
  • VSCode中针对C语言的代码格式化配置

    默认格式化工具 打开设置 Ctrl 43 xff0c 选择 用户 配置 xff0c 找到 文本编辑器 Default Formatter xff1a 安装了C C 43 43 插件后 xff0c 即可选择 xff1a C C 43 43 m
  • 总结的常用的前端开发中的常见套路之购物车页面

    1 商品的全选和全不选 获取页面中全选框所在的input xff0c 绑定其变change事件获取全选框的状态遍历获取商品对应的CheckBox xff0c 设置其选中状态和全选的保持一致同时 xff0c 当全选框状态发生变化时 xff0c
  • restframework权限,认证,限流配置

    认证Authentication DRF框架的默认全局认证方案如下 REST FRAMEWORK 61 39 DEFAULT AUTHENTICATION CLASSES 39 39 rest framework authenticatio
  • seek()方法的使用

    seek xff08 xff09 方法的使用 seek 方法用于移动文件读取指针到指定位置 file seek 方法标准格式是 xff1a file seek offset whence offset xff1a 开始的偏移量 xff0c
  • 为什么QQ用的是UDP协议而不是TCP协议?

    QQ既有UDP也有TCP xff01 不管UDP还是TCP xff0c 最终登陆成功之后 xff0c QQ都会有一个TCP连接来保持在线状态 这个TCP连接的远程端口一般是80 xff0c 采用UDP方式登陆的时候 xff0c 端口是800
  • 五分钟读懂TCP 协议——TCP协议简介

    TCP 是互联网核心协议之一 xff0c 本文介绍它的基础知识 一 TCP 协议的作用 互联网由一整套协议构成 TCP 只是其中的一层 xff0c 有着自己的分工 xff08 图片说明 xff1a TCP 是以太网协议和 IP 协议的上层协