ODrive踩坑(四)AS5047P-SPI绝对值磁编码器,不需每次上电校准无刷电机,直接上电可用

2023-11-13

前几篇介绍了ODriveWindows下的使用环境搭建,以及TLE5012BAS5047P的ABI配置。

ODrive教程资源导航

ODrive踩坑(一)windows下使用环境的搭建,odrivetool及USB驱动的安装

ODrive踩坑(二)3508电机和TLE5012B磁编码器参数配置、校准、位置闭环模式转动电机(TLE5012B - ABI)

ODrive踩坑(三)AS5047P磁编码器的ABI接口

ODrive踩坑(四)AS5047P-SPI绝对值磁编码器,不需每次上电校准无刷电机,直接上电可用

ODrive踩坑(五)驱动云台电机、低齿槽转矩电机实现高精度定位


苦于使用 ABI编码器,每次上电都要编码器校准,电机左转一圈再右转一圈。浪费时间不说,运动过程还可能导致工件误触,导致上电意外。如果想要设备上电不经过编码器校准,通电后直接就能用,可能要用到 SPI绝对值编码器

ODrive 支持两种类型的 SPI绝对值编码器

  • CUI 协议:兼容 AMT23xx 系列 (AMT232A, AMT232B, AMT233A, AMT233B)。
  • AMS 协议:兼容 AS5047P 和 AS5048A。

注意ODrive 并不支持 TLE5012B 的SPI接口,仅能使用它的 ABI)


1、ODrive连接AS5047P,电机安装


  为了方便测试 AS5047P-SPI绝对值编码器,也便于扩展不同的电机,就有了下面这块万能转接板,支持 2208、2212、3508、5008、6010、6374、42步进、57步进 等不同电机的定位安装。

  图中AS5047P转接板购买链接,我的淘宝小店AS5047P SPI磁编码器 3206云台无刷电机 带径向磁铁 Odrive电机

  店铺详情内有安装孔位、原理图、教程、资料,手机端可能因没做适配看不到,建议用电脑打开。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  将电机与磁编码器正确安装,强磁AS5047P芯片的间距不建议超过 3mm。手册中建议值为 0.5~3mm。

电机的型号与第(二)章的不同,但极对数还是 7对,其他参数也基本一致。
测试使用与 DJI3508相同的 PID参数,控制效果竟比原来要好不少。
在这里插入图片描述
连接 SPI接口,SCK、MISO、MOSI 一一对应,CS插到 ODrive4脚
在这里插入图片描述

在这里插入图片描述


2、ODrive连接电脑,进行电机校准前的配置


将系统上电,ODrive连接电脑。


2.1、恢复出厂配置


# 恢复出厂配置
odrv0.erase_configuration()


2.2、配置主板参数


  • 限制参数主要用于保护主板、电机不会受损,包括最大电流、保护电压等参数。
  • 根据自己适配的电机,酌情调整大小。
# 配置AUX接口上的制动电阻值(常见的为0.472.0Ω),如没接则配置为0
odrv0.config.brake_resistance = 0

# 配置低压保护阈值(V)
odrv0.config.dc_bus_undervoltage_trip_level = 8.0

# 配置高压保护阈值(V)
odrv0.config.dc_bus_overvoltage_trip_level = 56.0

# 配置过流保护阈值(A)
odrv0.config.dc_max_positive_current = 50.0

# 配置反向电流阈值(电机制动产生的反向电流)(A)
odrv0.config.dc_max_negative_current = -5.0

# 配置回充电流值(根据供电电池的参数配置,开关电源供电配置为0)(A)
odrv0.config.max_regen_current = 0

# 保存参数
odrv0.save_configuration()

在这里插入图片描述


2.3、配置电机参数


# 配置电机0极对数,根据博客开篇的介绍,自己去数磁极个数,然后/2
odrv0.axis0.motor.config.pole_pairs = 7

# 配置电机0的限制电流(A)
odrv0.axis0.motor.config.current_lim = 35

# 配置电机0的电流采样阈值(A)
odrv0.axis0.motor.config.requested_current_range = 60

# 配置电机0校准时的电流阈值(根据自己电机的负载状况酌情配置)(A)
odrv0.axis0.motor.config.calibration_current = 10

# 配置电机0类型。
# 目前支持两种电机:大电流电机(MOTOR_TYPE_HIGH_CURRENT)和云台电机(MOTOR_TYPE_GIMBAL)
odrv0.axis0.motor.config.motor_type = MOTOR_TYPE_HIGH_CURRENT

# 保存参数
odrv0.save_configuration()

在这里插入图片描述


2.4、配置编码器参数


# 配置电机0编码器类型。ENCODER_MODE_INCREMENTAL 使用的是ABI正交(增量)编码器。
# 值 ENCODER_MODE_SPI_ABS_AMS 使用AMS磁编码器-AS5047/AS5048。
odrv0.axis0.encoder.config.mode = ENCODER_MODE_SPI_ABS_AMS

# 设置CSn片选的引脚,ODrive J3接口GPIO3-8任选一个作为CS,这里我使用GPIO4
odrv0.axis0.encoder.config.abs_spi_cs_gpio_pin = 4

# 配置电机0编码器CPR(每转一圈,编码器的计数),AS5047P的最大分辨率为14位
odrv0.axis0.encoder.config.cpr = 2**14

# 编码器带宽设置,CPR值越高带宽设置的也越高
odrv0.axis0.encoder.config.bandwidth = 3000

# 编码器精度,类型为 [float],单位为 [圆周角度∠] (这个值可以适当的大一些,避免环境干扰)
# 电机实际转动角度和开环移动距离之间允许的最大误差,超过此误差将报错ERROR_CPR_OUT_OF_RANGE。
odrv0.axis0.encoder.config.calib_range = 10

# 保存参数
odrv0.save_configuration()

如果因编码器精度误差,而导致失步,会使 ODrive 报错不运行。

建议将odrv0.axis0.encoder.config.calib_range调大,尤其是磁编码器,避免因环境干扰出现误差。(AS5047P的手册对器件的精度描述为±0.1°,故odrv0.axis0.encoder.config.calib_range的值最小不能小于0.1)
在这里插入图片描述


2.5、配置控制器参数(位置闭环模式、配置PID参数)


# 配置电机0控制模式,为位置闭环控制
odrv0.axis0.controller.config.control_mode = CONTROL_MODE_POSITION_CONTROL

# 配置电机0最大转速(转/秒)(电机kv值 * 电压 / 60)
odrv0.axis0.controller.config.vel_limit = 120

# 配置位置环增益:20
odrv0.axis0.controller.config.pos_gain = 20

# 配置速度环增益:0.05
odrv0.axis0.controller.config.vel_gain = 0.05

# 配置积分增益:0.02
odrv0.axis0.controller.config.vel_integrator_gain = 0.02

# 配置输入模式为:梯形轨迹模式
odrv0.axis0.controller.config.input_mode = INPUT_MODE_TRAP_TRAJ

# 配置梯形模式下的电机转速阈值(转/秒)
odrv0.axis0.trap_traj.config.vel_limit = 50

# 配置梯形运动模式下的加速加速度
# 数值大小影响动作跟随效果,大则跟随快;小则跟随慢。
odrv0.axis0.trap_traj.config.accel_limit = 10

# 配置梯形运动模式下的减速加速度
# 数值大小影响动作跟随效果,大则跟随快;小则跟随慢。
odrv0.axis0.trap_traj.config.decel_limit = 10

# 保存参数
odrv0.save_configuration()

# 重启驱动器
odrv0.reboot()

上述配置完成后,会重启控制器,留意最后一条指令。

在这里插入图片描述


三、电机和编码器校准


使用 AS5047-SPI绝对值磁编码器 最大的好处,就是可以不用上电后运动校准。只要校准过一次,以后便可直接上电使用,缩短了上电到正常工作的时间,也避免了校准过程对驱动部件的影响。

注意:以下操作请务必按照规定的顺序执行,不然很容易造成校准后电机不能进入闭环,或者电机在重新启动后不能自动进入闭环。AS5047P-SPI磁编码器最难配置,也最容易出错的地方就在校准的步骤,其中试验了好几十次,基本是差了几步顺序就会导致重启后不能正常进入闭环。请务必按照以下操作进行!!!

注意:如有重启后不能自动进入闭环、或者电机参数校准出错 的现象,请断电重启后重试。我的设备有时必须断电重启才可用,reboot命令的重启不管用。(用odrv0.axis0.error查询是否出错)

下面三种配置方法,建议依次顺序试验一次。可以只选择一种进行设置,但按顺序来一般不会有错。


3.1 每次上电后都自动校准编码器 的配置方法


这种方式的运行现象与 ABI接口的一致,每次上电后都自动左转一圈右转一圈,自动进行编码器校准

# 进行电机参数校准(运行后电机会发出哔~的一声)
odrv0.axis0.requested_state = AXIS_STATE_MOTOR_CALIBRATION

# 设置电机预校准。(不用每次上电都哔~的一声)
# 驱动器会将本次校准值保存,避免上电启动后自动校准,以加快启动速度。
odrv0.axis0.motor.config.pre_calibrated = True

# 进行编码器校准(运行后,电机会正转一圈再反转一圈)
odrv0.axis0.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION

# 查看错误,如果为0,则为无错。否则请断电后重启,重试校准。
odrv0.axis0.error

如校准的第一步无反应,建议先断电重启后重试。

如断电重启后校准仍无效,用 odrv0.axis0.encoder.shadow_count 来测试 AS5047P-SPI磁编码器 是否可以正确读数,如读值始终为0,则说明AS5047P硬件故障或者连线有误,不能进行后续的校准操作。(磁编码器容易配置失败,大多数都是这个问题,读不到值,一直为0)

注意:上面的配置 没有保存参数,有保存参数会让后面的闭环无法运行,不清楚什么原因。下面继续。
在这里插入图片描述

之后进入闭环模式,电机会保持位置,用手扭动电机,电机会产生反抗并回到原来位置:

# 配置电机为闭环模式
odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL

测试运动。电机会按照之前设置的梯形轨迹运行到指定位置:

# 控制电机运行到10圈的位置
odrv0.axis0.controller.input_pos = 10

# 控制电机运行到0圈的位置
odrv0.axis0.controller.input_pos = 0

经过上面的校准后,机器已经能够用AS5047P磁编码器进行闭环控制。

但并不会在重启后自动进入闭环,仍需在重启后手动进入闭环,略有不便。下面设置上电自动校准并闭环运行。

设置为上电自动校准,自动进入闭环。

# 设置ODrive上电启动时,自动校准编码器
odrv0.axis0.config.startup_encoder_offset_calibration = True

# 设置ODrive上电启动时,自动进入闭环模式
odrv0.axis0.config.startup_closed_loop_control = True

# 保存参数
odrv0.save_configuration()

# 重启驱动器
odrv0.reboot()

重启后,就会看到电机右转一圈又左转一圈,自动校准磁编码器。

因为上面设置了 odrv0.axis0.motor.config.pre_calibrated = True,会省去上电启动后自动校准电机参数的过程(哔~的一声),节约了一部分启动时间。


3.2 每次上电后,只自动校准电机,不校准编码器


上面的配置是上电后自动校准编码器,不仅导致启动时间变长,也会导致机械部件碰到零件的意外。

这次使用的AS5047P磁编码器,支持一圈内的绝对值定位,相较于普通的ABI正交编码器,可以配置为上电不校准编码器,大大节约了上电启动时间,也避免了运动过程对其他零件的影响。

下面照做一次。如第一步电机校准无反应,重新上电后重试。

# 进行电机参数校准(运行后电机会发出哔~的一声)
odrv0.axis0.requested_state = AXIS_STATE_MOTOR_CALIBRATION

# 设置ODrive上电启动后,自动校准电机
odrv0.axis0.config.startup_motor_calibration = True

# 进行编码器校准(运行后,电机会正转一圈再反转一圈)
odrv0.axis0.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION

# 设置编码器预校准。(不用每次上电都右转一圈又左转一圈)
# 驱动器会将本次校准值保存,避免上电启动后自动校准,以加快启动速度。
odrv0.axis0.encoder.config.pre_calibrated = True

# 关闭ODrive上电启动时,自动校准编码器
odrv0.axis0.config.startup_encoder_offset_calibration = False

# 配置电机为闭环模式
odrv0.axis0.requested_state = AXIS_STATE_CLOSED_LOOP_CONTROL

# 设置ODrive上电启动时,自动进入闭环模式
odrv0.axis0.config.startup_closed_loop_control = True

# 保存参数
odrv0.save_configuration()

# 重启驱动器
odrv0.reboot()

如果因编码器精度误差,而导致失步,会使 ODrive 报错不运行。

建议将下值调大,尤其是磁编码器,容易受环境干扰出现误差。

(AS5047P的手册对器件的精度描述为±0.1°,故odrv0.axis0.encoder.config.calib_range的值最小不能小于0.1)

# 编码器精度,类型为 [float],单位为 [圆周角度∠] 
# 电机实际转动角度和开环移动距离之间允许的最大误差,超过此误差将报错ERROR_CPR_OUT_OF_RANGE。
odrv0.axis0.encoder.config.calib_range = 0.1
odrv0.axis0.encoder.config.calib_range = 10

# 保存参数
odrv0.save_configuration()


3.3 每次上电后,不需任何校准,直接自动进入闭环


在3.2的基础上,继续这样设置:(可能会失败,但用3.2保底,可以避免每次上电都校准编码器)

# 进行电机参数校准(运行后电机会发出哔~的一声)
odrv0.axis0.requested_state = AXIS_STATE_MOTOR_CALIBRATION

# 设置电机预校准。(不用每次上电都哔~的一声)
# 驱动器会将本次校准值保存,避免上电启动后自动校准,以加快启动速度。
odrv0.axis0.motor.config.pre_calibrated = True

# 关闭ODrive上电启动后,自动校准电机
odrv0.axis0.config.startup_motor_calibration = False

# 进行编码器校准(运行后,电机会正转一圈再反转一圈)
odrv0.axis0.requested_state = AXIS_STATE_ENCODER_OFFSET_CALIBRATION

# 设置编码器预校准。(不用每次上电都右转一圈又左转一圈)
# 驱动器会将本次校准值保存,避免上电启动后自动校准,以加快启动速度。
odrv0.axis0.encoder.config.pre_calibrated = True

# 保存参数
odrv0.save_configuration()

# 重启驱动器
odrv0.reboot()


四、错误修复、注意事项


多用odrv0.axis0.error去检错,多用odrv0.axis0.motorodrv0.axis0.encoder去检查参数。

odrv0.axis0.encoder.shadow_count可以测试AS5047P-SPI磁编码器能否正常读数。

odrv0.vbus_voltage:检查ODrive的供电电压。

如果你的ODrive无法正常工作,用如下查看错误列表:
dump_errors(odrv0) 查看错误
dump_errors(odrv0, True) 清除错误(如果报错ODrive不会继续执行电机旋转指令)


如需重新对 AS5047P 进行软硬件设计,有以下文章可供参考:
AS5047P磁编码器应用设计大全解:硬件电路设计、SPI通信时序、逻辑波形分析、注意事项

相关传感器:
TLE5012B 硬件电路设计、4线SPI通信,驱动完美兼容4线SPI不用改MOSI开漏推挽输出

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

ODrive踩坑(四)AS5047P-SPI绝对值磁编码器,不需每次上电校准无刷电机,直接上电可用 的相关文章

  • 电子元器件符号+实物图+命名规则(太全了,绝对收藏)

    电子电路中常用的器件包括 电阻器 含电位器 电容器 电感器 变压器 二极管 三极管 光电器件 电声器件 显示器件 晶闸管 可控硅 场效应晶体管 IGBT MOSFET 继电器与干簧管 开关 保险丝 晶振 连接器 各种传感器等 下面一起来看看
  • STM32 电机教程 12 - BLDC 闭环电流控制

    前言 无刷直流 Brushless Direct Current BLDC 电机是一种正快速普及的电机类型 它可在家用电器 汽车 航空航天 消费品 医疗 工业自动化设备和仪器等行业中使用 正如名称指出的那样 BLDC 电机不用电刷来换向 而
  • 嫖一嫖显示器的Over drive (OD) 功能

    1 背景 如下图 快速运动的画面会产生拖影现象 影响游戏体验 视觉观感 2 产生的原因 当响应时间大于刷新时间的时候 就会产生拖影 因为 上一帧还没有渲染完 又来了新的帧 3 首先明确上面两个时间的概念 3 1 Response time
  • 手机内部充电电流控制原理图(如果手机支持快充,比如支持9V快充,则通过充电接口的D+、D-二根线,输出对应的高低电平组合,FP6601就会控制它的3脚接地,4脚悬空,此时R3与R2并联,改变反馈下拉)

    手机内部充电电流控制原理图 来源 电工之家 作者 电工之家 2019 12 08 10 48 7365次阅读 0 手机充电器电流控制方面 现在的手机充电器 无一例外 都使用了隔离式开关电源电路 充电器的体积 是最好的证明 对于隔离式开关电源
  • 常用的Buck型DC-DC的原理图电路

    常用DC DC buck原理图电路 下图是比较完整的DC DC电路设计 全文将主要介绍各个元件的作用 针对该电路各位号分析 1 Vin的C1 C2主要是滤波 使得DC DC芯片输入能够得到较为干净的电 2 R1 R2是限流用的 一般是K级的
  • 【步进电机】简单介绍

    步进电动机是一种将电脉冲转化为角位移的执行机构 当步进驱动器接收到一个脉冲信号 它就驱动步进电机按设定的方向转动一个固定的角度 这个角度叫做歩距角 我们可以通过控制脉冲的个数来控制电机的角位移量 从而达到精确定位的目的 同时还可以通过控制脉
  • N-MOS和P-MOS驱动应用实例

    MOS在电路设计中是比较常见的 按照驱动方式来分的话 有两种 即 N MOS管和P MOS管 MOS管跟三极管的驱动方式有点类似 但又不完全相同 那么今天笔者将会给大家简单介绍一下N MOS管和P MOS管的工作原理 并结合自己实际的应用来
  • 为什么电源中经常用肖特基二极管

    如下图为两个开关电源电路图 下面的二极管都是肖特基二极管 那么为什么电源中都是用肖特基二极管呢 主要有两个原因 1 肖特基二极管导通压降低 一般电源电流比较大 导通压降低意味着损失的功耗低 2 肖特基二极管响应时间快 一般开关电源是通过内部
  • Windows平台下 USRP E310 基础环境配置

    原创声明 作者 Billyme 詩 博客园 https www cnblogs com billyme CSDN https blog csdn net horizon08 Github https billyas github io 本文
  • ODrive踩坑(五)ODrive驱动云台电机、低齿槽转矩电机实现高精度定位

    前几篇介绍了ODrive在Windows下的使用环境搭建 驱动3508 5008无刷电机 TLE5012B AS5047P的ABI编码器配置 AS5047P SPI绝对值编码器配置 ODrive踩坑 一 windows下使用环境的搭建 od
  • UDIMM和RDIMM内存条区别

    那什么是RDIMM 什么又是UDIMM呢 RDIMM registered DIMM Registered Dual In line Memory Module 带寄存器的双线内存模块 表示控制器输出的地址和控制信号经过Reg寄存后输出到D
  • 直流电机笔记1-串并励电机特性

    文章目录 一切的基础 电磁感应定律 磁感线 左手定则 右手定则 安培定则 也叫右手螺旋定则 直流电机转动机理直观演示 直流串励 并励电机构造与区别 直流电机的反电动势 一切的基础 电磁感应定律 1 1831法拉第发现第一块磁铁穿过一个闭合线
  • PCB 过孔简介

    做过 PCB 设计的最先了解的应该就是过孔了 因为有过孔的存在我们才能做出多层板 过孔应该是 PCB 中最简单的部分了 也是最容易被我们忽略的地方 常见的过孔分为两大类 1 用作各层之间的电气连接 2 用作器件的固定或定位 一 过孔的介绍
  • AD——绘制STC89C51单片机原理图

    AltiumDesigner绘制STC89C51单片机原理图
  • Allegro约束管理器的设置

    1 打开约束管理器 2 设置管理器 黄色表示未打开 右击 选择analysis mode打开 3 添加物理规则 修改的数据 4 建立组 同时选中几个网络 右击选择Create New Group新建一个组 修改组的规则里面的网络也都跟着修改
  • 运放稳定性连载21:电容性负载的稳定性——具有双通道反馈的RISO(2)

    现在 我们必须测量如图10 6所示的Zo 小信号AC开环输出阻抗 该Tina SPICE测试电路将测试空载OPA177的Zo R2和R1以及LT为低通滤波器函数提供了一条AC通道 这样 使得我们能将DC短路和AC开路一起并入反馈电路 DC工
  • 电巢携手武昌工学院工程能力实训顺利开班!

    为深化校企合作 产教融合打造新工科建设 提升学生工程实践能力 电巢工程能力实训班按照不同岗位类别 匹配对应的企业岗位任职能力要求对学生开展分级培养 以产业需求为导向 培养创新型 应用型人才 6月6日下午4时 深圳电巢联合武昌工学院信息工程学
  • 2023年电赛E题详细讲解

    前言 E题是运动目标控制与自动追踪系统 其实就是一个红色激光追踪绿色激光 本文主要授人以渔 讲解思路 不含代码 建议自己编写 本文旨在和大家探讨一下更好的方案 欢迎讨论 读题 做题肯定是要读题的 本节主要是将一些主要的点 并反推出题人的出题
  • 步进电机驱动器细分原理_步进驱动器细分设置表说明

    步进驱动器细分控制原理 在步进电机步距角不能满足使用要求时 可采用细分驱动器来驱动步进电机 细分驱动器的原理是通过改变A B相电流的大小 以改变合成磁场的夹角 从而可将一个步距角细分为多步 步进电机最常见的分为两相步进电机 1 8 或者三相
  • DDR布线要求及拓扑结构分析

    在DDR的PCB设计中 一般需要考虑等长和拓扑结构 等长比较好处理 给出一定的等长精度通常是PCB设计师是能够完成的 但对于不同的速率的DDR 选择合适的拓扑结构非常关键 在DDR布线中经常使用的T型拓扑结构和菊花链拓扑结构 下面主要介绍这

随机推荐

  • js删除服务器上文件,js删除服务器文件

    js删除服务器文件 内容精选 换一换 目标服务器已安装操作系统 并且处于联网状态 目标服务器已安装鲲鹏编译插件 保护组生产站点服务器为SUSE操作系统 对该云服务器开启容灾保护后 执行切换操作 云服务器EIP无法ping通 执行切换操作后
  • ASP.NET立即上手教程(2)

    什么是asp net的Web Forms Asp net Web Forms 页面框架是可升级的通用语言运行时刻 CLR 程序模型 用来在服务器端动态生成WEB页面 美国人说话就是别扭 其实Web Forms就是asp net编写的页面 作
  • 本征正交分解(POD)入门(详解)

    思来想去还是把题目从 简介 改成了 入门 详解 其实详解主要就是针对可能没接触过矩阵论的同学 我也是研一才学的 入门是指的我会解释一些名词 方便理解 另外PCA 主成分分析 本质上就是POD 只是我最近翻的热工学论文大部分都用的POD这个名
  • 楠姐技术漫话:接着唠唠社区发现

    halo 大家好很开心又和大家见面了 在第一篇 楠姐技术漫画 图计算的那些事 发布之后 楠姐收到了很多建议 鼓励和支持 非常感谢大家的喜欢 所以楠姐尽自己所能马不停蹄开始第二篇的创作 虽迟但到 本篇依然是风控算法分享 其实也依然算是图算法系
  • 从零开始搭建物联网平台(四)EMQ-X消息中间件

    物联网的消息中间件有很多 如ActiveMq RabbitMq Emq 以及自己实现的netty borker 这里为什么要选择EMQ呢 首先 在使用emqx之前我用过ActiveMq由于是国外开发的 对国内产品的支持不够好 文档和社区也远
  • c++ 使用libcurl下载网络图像

    include
  • 解决ERROR: This script does not work on Python 2.7 The minimum supported Python version is 3.7

    前言 最近因项目需要 部署区块链的网络时候 需要一个问题 运行下载的install sh脚本时候 提示出错 然后找到该脚本文件 找到对应报错的语句 发现是python的pip没有下载好的缘故 解决 问题原因知道了 然后就下载一个Pip就好
  • 家政服务小程序制作:提升生活质量、解决烦恼

    在现代快节奏的生活中 家政服务扮演着越来越重要的角色 借助家政服务小程序的制作 为用户提供便捷可靠的家务帮助已成为一种新的选择 那么家政服务小程序的制作过程是怎么样的呢 带来的好处有哪些呢 1 家政服务小程序的定义与优势 小程序是微信里面的
  • 第十八讲:神州三层交换机DHCP中继服务的配置

    当DHCP客户机和DHCP服务器不在同一个网段时 由DHCP中继传递DHCP报文 增加DHCP中继功能的好处是不必为每个网段都设置DHCP服务器 同一个DHCP服务器可以为很多个子网的客户机提供网络配置参数 即节约了成本又方便了管理 这就是
  • 流水灯实验过程

    流水灯 1 基本思路 先让P1口全为高电平 灯不亮 通过为左移 位右移动来实现依次点亮LED灯一个具有注脚的文本 1 用for循环语句嵌套 写程序 include
  • 在SpringBoot中整合其它技术

    在SpringBoot中整合其它技术 前言 一 SpringBoot整合SpringMVC 1 修改web端口 2 访问静态资源 3 添加拦截器 4 更详细的日志 二 SpringBoot整合MyBatis 1 整合连接池 2 整合myba
  • 老板说,可以在家办公,顿时办公室沸腾了……

    在美国的IT行业中 在家办公 WFH 仍然不是普遍现象 这有点匪夷所思 因为 1 员工渴望在家办公 2 有些雇主已经提供在家办公 3 反对在家办公的意见不能成立 在家办公 并不意味着 100 在家工作 从不需要去办公室 而是公司应该提供这些
  • opencv进行简单的裂缝检测

    师弟最近要使用四旋翼进行桥梁探伤 主要是用运动相机搭载在四轴上检测裂缝 就顺便搞了一下有关于裂缝检测的图像处理 算法比较简单 没有考虑太多复杂情况 在简单墙面背景下基本可以找到裂缝并框定 基本思路为 先转换彩色图为灰度图 然后进行自适应局部
  • 区块链能解决媒体行业哪些问题?

    对于最近炙手可热的区块链技术 最近流行起这样一句笑言 没有什么问题是人工智能解决不了的 如果有 那就用区块链解决 这句话虽然略显夸张 但也反映出人们对于区块链技术的高度期待 区块链有三个显著的特点 去中心化 可追溯 不可篡改 这三个特点为它
  • Linux 中不适用功能键切换TTY

    2019独角兽企业重金招聘Python工程师标准 gt gt gt 本简要指南介绍了在类 Unix 操作系统中如何在不使用功能键的情况下切换 TTY 在进一步讨论之前 我们将了解 TTY 是什么 正如在 AskUbuntu 论坛的一个答案
  • C#中关于在一个数据库同时修改2个数据的语法使用!

    SqlCommand cmd new SqlCommand update Student set Sname updateName where Sno Sno con SqlCommand cmd2 new SqlCommand updat
  • AES对称加密工具类(GCM)

    import java io UnsupportedEncodingException import java security InvalidAlgorithmParameterException import java security
  • Java实现图片格式转换(通过ImageIO)

    文章目录 粗略介绍ImageIO 一 遍历文件夹 二 转换图片格式 视频效果演示 粗略介绍ImageIO ImageIO是javax imageio包下的一个类 用于实现Java中关于图片输入输出的一种类 这个类中所有方法均为静态方法 因此
  • 2.9 UiPath中断活动Continue的介绍和使用

    Continue的介绍 跳过当前For Each 循环内的迭代 结束本次循环 Continue控件只能用于For Each 循环中 Continue在UiPath中结合For Each循环的使用 打开设计器 在设计库中新建一个Flowcha
  • ODrive踩坑(四)AS5047P-SPI绝对值磁编码器,不需每次上电校准无刷电机,直接上电可用

    前几篇介绍了ODrive在Windows下的使用环境搭建 以及TLE5012B AS5047P的ABI配置 ODrive教程资源导航 ODrive踩坑 一 windows下使用环境的搭建 odrivetool及USB驱动的安装 ODrive