拆解雪花算法生成规则

2023-11-16

1 介绍

雪花算法(Snowflake)是一种生成分布式全局唯一 ID 的算法,生成的 ID 称为 Snowflake IDs 或 snowflakes。这种算法由 Twitter 创建,并用于推文的 ID。目前仓储平台生成 ID 是用的雪花算法修改后的版本。

雪花算法几个特性

  • 生成的 ID 分布式唯一和按照时间递增有序,毫秒数在高位,自增序列在低位,整个 ID 都是趋势递增的。

  • 不依赖数据库等三方系统,稳定性更高,性能非常高的。

  • 可以根据自身业务特性分配 bit 位,非常灵活。

2 其他分布式唯一 ID 生成方案

2.1 数据库生成

以 MySQL 为例,单库单表,给字段设置 auto_increment 来生成全局唯一 ID
优点:

  • 非常简单,维护成本比较低

  • ID 唯一,单调递增,可以设置固定步长

缺点:

  • 可用性难以保证,每次生成 ID 都需要访问数据库,瓶颈在于单台 MySQL 读写性能上,如果数据库挂掉会造成服务不可用,这是一个致命的问题

2.2 UUID

UUID 是由一组 32 位数的 16 进制数字所构成,故 UUID 理论上的总数为 16^32=2^128,约等于 3.4 x 10^38。也就是说若每纳秒产生 1 兆个 UUID,要花 100 亿年才会将所有 UUID 用完。UUID 的标准型式包含 32 个 16 进制数字,以连字号分为五段,形式为 8-4-4-4-12 的 32 个字符。示例:550e8400-e29b-41d4-a716-446655440000
优点:

  • 本地生成 ID,不需要进行远程调用,没有网络耗时

  • 基本没有性能上限

缺点:

  • 可读性差

  • 长度过长,16 字节 128 位,生成的 UUID 通常是 36 位 (包含 -),有些场景可能不适用。如果用作数据库主键,在 MySQL 的 InnoDB 引擎下长度过长,二级索引 (非主键索引) 会占用很大的空间。

  • 无法保证趋势递增,在 MySQL 的 InnoDB 引擎下,新插入数据会根据主键来寻找合适位置,会导致频繁的移动、分页增加了很多开销。

3 snowflake 算法实现细节

3.1 拆解 64bit 位

snowflake 生成的 id 通常是一个 64bit 数字,java 中用 long 类型。
 

image.png


图 1:snowflake 算法中的 64-bit 划分方式

  • 1-bit 不用于生成 ID (符号位) long 范围 [-2^(64-1), 2^(64-1) ] , (64-1) 中的 1 代表的就是符号位

  • 41-bit 时间戳 (毫秒) 可以表示 1 x 2^41 / (1000 x 3600 x 24 x 365) = 69 年的时间

  • 10-bit 可以分别表示 1 x 2^10 = 1024 台机器,范围 [0,1023]

  • 12-bit 表示 1ms 内自动递增的序列号,1 x 2^12 = 4096 个 范围 [0,4095]。单机 1ms 可以生成 4096 个不重复的 ID

通过上述方式进行生成 ID,可以保证 1024 台机器在任意 69 年的时间段里不会出现重复的 ID,而且单台机器支持一秒能够生成 409.6 万个 ID。
  这种方式可以支撑大部分业务,如果不满足,可以根据自身业务特点来调整不同命名空间占用的 bit 数。如果我们有划分 IDC 的需求,可以将 10-bit 分 5-bit 给 IDC,分 5-bit 给工作机器。这样就可以表示 32 个 IDC,每个 IDC 下可以有 32 台机器。如果我们的机器位比较特殊,数值相对较大,但是对并发要求不高,还可以将时间位调整为秒级,时间位节省出 10-bit 留给机器位。

  • 1-bit 符号位

  • 31-bit 时间戳 (秒) 1 x 2^31/ (3600 x 24 x 365) = 68 年

  • 22-bit 机器位 运维平台给提供的数值 范围 [0,2^22-1]

  • 10-bit 序列号 范围 [0, 2^10 - 1] 共 1024 个

通过上述方式进行生成 ID,可以保证 4194303 台机器在任意 68 年的时间段里不会出现重复的 ID,而且单台机器支持一秒能够生成 1024 个 ID。

3.2 Java 实现

public class IdGenerator {
    // 起始时间
    private final long from = 1422720000000L;
    // 机器位所占bit位数
    private final long instanceIdBits = 10L;
    // 序列号所占bit位数
    private final long sequenceBits = 12L;

    // 机器位左移长度
    private final long instanceIdShift = sequenceBits;
    // 时间位左移长度
    private final long timestampLeftShift = sequenceBits + instanceIdBits;

    // 序号1: 最大机器ID
    private final long maxInstanceId = -1L ^ (-1L << instanceIdBits);
    // 最大序列号
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long instanceId;
    private long sequence = 0L;
    private long lastTimestamp = -1L;

    public IdGenerator(long instanceId) {
        if (instanceId > maxInstanceId || instanceId < 0) {
            throw new IllegalArgumentException(String.format("instance Id can't be greater than %d or less than 0", maxInstanceId));
        }
        this.instanceId = instanceId;
    }
    //  序号2:
    public synchronized long nextId() {
        long timestamp = timeGen();
        //  序号3:
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //  序号4:
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextSecs(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }

        lastTimestamp = timestamp;
        //  序号5:
        return ((timestamp - from) << timestampLeftShift)  // (当前时间 - 起始时间) 向左移位
                | (instanceId << instanceIdShift)  // 机器位 向左移位
                | sequence; // 序列位
    }

    private long tilNextSecs(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }
}


3.3 一些疑问

3.3.1 为什么 bit 位置只利用了 63 位?

因为 long 在 java 中占 8 字节,每字节 8bit,一共 64bit,其中有 1 个 bit 位是符号位不能用做生成 ID,如果符号位也用来做 ID 中的 1 个 bit 为会导致 ID 出现负数,影响趋势递增特性。

3.3.2 计算最大机器 ID

见代码中注释 序号 1
maxInstanceId = -1L ^ (-1L<<instanceIdBits)
等价于 maxInstanceId = -1 ^(-1<<10)
① -1 二进制

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111

② -1 左移 10 位 -1<<10 二进制

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000

①与②进行异或运算 异或运算:同为假,异为真,所以最终结果应该为

0000 0000 0000 0000 0000 0000 0000 00000000 0000 0000 0000 0000 0011 1111 1111

最后:maxInstanceId = 2^10 - 1 = 1023
sequenceMask 计算方法相同,结果为 2^12 - 1 = 4095

3.3.3 计算序列号位

见代码中注释 序号 4

if (lastTimestamp == timestamp) {
    sequence = (sequence + 1) & sequenceMask;
    if (sequence == 0) {
        timestamp = tilNextSecs(lastTimestamp);
    }
} else {
    sequence = 0L;
}


其中这段代码的是计算序列号的代码主要逻辑是,如果上个生成 ID 的时间位与当前 ID 的时间位冲突,则会生成一个序列号进行区分,如果序列号用尽,则等待下一个时间点再生成。如果上个生成 ID 的时间位与当前 ID 的时间位不冲突,则将序列号设置成 0。

sequence = (sequence + 1) & sequenceMask,序列号最大值 sequenceMask 为 4095,等价于如下这种写法。

sequence = (sequence + 1);
if(sequence == 4095){
    sequence = 0;
}


其实这两种写法的结果是一致的,就是对 (sequence + 1) 进行取余。
这里有个位运算知识点 k % m = k & (m - 1),m 需要满足 m = 2^n,sequenceMask = 2^12 - 1。所以刚好可以用与运算进行取余操作,效率杠杠滴。

3.3.4 生成 ID

见代码中注释 序号 5:
 此时我们拿到了时间位 (timestamp - from)、机器位 (instanceId )、序列号位 (sequence), 所以就可以计算最终的 ID 了。

((timestamp - from) << timestampLeftShift)  // (当前时间 - 起始时间) 向左移位
| (instanceId << instanceIdShift)  // 机器位 向左移位
| sequence; // 序列位


①((timestamp - from) << timestampLeftShift) 计算时间位
from 是固定的 1422720000000, timestampLeftShift = 12 + 10. 我们假设 timestamp = 1422720000001。也就是 from 刚刚过去 1 毫秒。1 毫秒也是我们时间位倒数第二小的值,因为 0 是最小值。时间位取值范围 [0, 2^41 - 1], 从这也可以看出上边描述时间位时为什么把时间段特意标注了,因为时间位存的不是具体时间,而是以 from 为起始来算的过去了多少时间。
来看下 1<<22 结果

image.png

图 2: 时间位移位结果

图 2 可以看出,时间位向左移位 22,位置正好到第一个时间位。

②(instanceId << instanceIdShift) 计算机器位
为了方便计算,这里我们假设 instanceId 等于 1, 机器位取值范围 [0,-1]。
那么机器位就是 1 << 12

image.png

图 3: 机器位移位结果

图 3 可以看出,机器位左移 12 位,位置正好到第一个机器位。

③按照 ① | ② | sequence 进行或运算进行生成 ID
现在我们有了时间位的值,机器位的值,就只差序列号位的值,序列号是上面 3 描述代码生成的,范围是 [0, 2^12-1]。为了方便计算,我们假设 sequence = 1
那么 ID = ① | ② | 1。进行或运算

image.png

图 4: ID = ① | ② | 1

下图是按照上面逻辑生成的 ID

image.png

图 5: 程序生成结果

3.3.5 注意:雪花算法需要用单例方式生成 ID

因为雪花算法会依赖上一次生成的 ID 的时间来判断是否需要对序列号进行增加的操作,如果不是单例,两个业务用两个对象同时获取 ID,则可能会生成相同的 ID

4 关于雪花算法的一些思考

机器位怎么取值

  • 主机唯一标识 如果运维平台有机器唯一标识,可以在运维平台取。不过需要考虑机器位能否容纳下唯一标识,可能会过长,也需要考虑运维平台的唯一标识未来变化。

  • 可根据 ip 进行计算 如果能保证不同机房的机器 ip 不重复,可以利用 ip 来计算机器位,IP 最大 255.255.255.255。而(255+255+255+255) < 1024,因此采用 IP 段数值相加即可生成机器位,不受 IP 位限制。不过这种方式也不是绝对 ok,要根据自身情况在选择,比如 10.0.5.2 与 10.0.2.5 计算出来也是相同的。使用这种 IP 生成机器位的方法,必须保证 IP 段相加不能重复

  • 通过数据库 /redis/zk 等进行协调,在应用启动的时候给每个机器分配不会重复的机器位 id。

时钟回拨问题

雪花算法强依赖时间,如果时间发生回拨,有可能会生成重复的 ID,在我们上面的 nextId 中我们用当前时间和上一次的时间进行判断,如果当前时间小于上一次的时间那么肯定是发生了回拨,雪花算法的做法是简单的抛出了一个异常。

if (timestamp < lastTimestamp) {
   throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}


如果业务的异常容忍度低,这里我们可以对其进行优化,如果时间回拨时间较短,比如配置 5ms 以内,那么可以直接等待一定的时间,让机器的时间追上来。也可以利用扩展位,将 64-bit 的机器位或者序列号位预留出 2-bit 的防止时钟回滚的扩展位。

5 ID 逆运算

如果线上出现 ID 重复,如何进行问题定位?对 ID 进行逆运算拿到 ID 的时间位、机器位、序号位。就可以进行下一步分析了。以上述生成的 4198401 为例

5.1 时间

时间位 = ID / 2^(机器位 + 序列号位) + from
时间位 = 4198401 / 2^(12 + 10) + 1422720000000 = 1422720000001
与上述生成 ID 时用时间位相符
注意:ID / 2^(机器位 + 序列号位) 是整数

5.2 机器

机器位 = (ID / 2^ 序列号位) % 2^(机器位)
机器位 = (4198401 / 2^12) % 2^10= (1025) % 1024 = 1
与上述生成 ID 时用机器位数值相符

5.3 序列号

ID % 2^ 序列号位
序列号 = 4198401 % = 4198401 % 1024 = 1
与上述生成 ID 时用的序列号数值相符

6 资料

开源代码 scala 版本:https://github.com/twitter-archive/snowflake

作者:京东物流 马红岩

来源:京东云开发者社区 自猿其说 Tech

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

拆解雪花算法生成规则 的相关文章

随机推荐

  • Android机上跑linux(结果为Termux)

    文章目录 前言 Termux 前言 需求 我只想可以运行自己写的python程序 需要这个系统能有网络地址 能ssh 能连别人 也能别人连自己 能pip安装上合适的包 比如numpy 过程 ipad上搞ish 优点 垃圾IOS闭源生态 就它
  • 春秋云境:CVE-2022-22947

    春秋云境 CVE 2022 22947 文章合集 春秋云境系列靶场记录 合集 Spring Cloud Gateway spel 远程代码执行 CVE 2022 22947 漏洞介绍 Spring Cloud Gateway 远程代码执行漏
  • 永洪科技入选2023 商业智能应用案例TOP10

    8月13日 由DBC联合CIW CIS推出 经过两轮多维度评价 评议 评选 2023 商业智能应用案例TOP10 发布 永洪科技案例入选 电力行业数字化转型 数字化技术渗透至电力产业 发 输 变 配 用 各个环节 电力企业在复杂的产业环境中
  • 解决开发中Win Linux差别(持续更新)

    1 目录分隔符 Winxp Linux 解决办法 采用 File separator web目录 request getSession getServletContext getRealPath 数据库中图片目录用 serverInfo i
  • 【docker】将本地镜像push上传到dockerhub上,再从dockerhub上pull下来到本地,并运行的过程

    使用指示 完成本章操作 你需要有魔法 绿色 备注 红色或高亮 重点 要修改的地方 要注意的地方 注册dockerhub 登录官网 注册一个账号 需要用户名 邮箱 密码 前提是有魔法 不然邮箱会报错 然后在官网直接登录一下 在本地用命令行登录
  • ctfshow-菜狗杯-抽老婆

    任意文件读取 抽老婆 打开首先发现是一个图片下载 老婆们都很不错 感觉也没什么其他的东西 先F12看一下代码 发现有一处标注 感觉跟任意文件下载有关 一开始的错误思路 想着先扫一遍看看能不能发现啥 于是用dirsearch扫了一下 发现了
  • LAMP架构

    LAMP架构介绍 1 1LAMP平台概述 LAMP架构是目前成熟的企业网站应用模式之一 指的是协同工作的一整台系统和相关软件 能够提供动态web站点服务及其应用开发环境 LAMP是一个缩写词 具体包括Linux操作系统 Apache网站服务
  • 佳博 热敏打印机 ESCPOS 指令研究

    Test txt内容 参考打印到文档功能 初识打印机驱动 http www cnblogs com MrDing p 4078189 html 热敏打印头打印原理和C实现黑白位图的放大 https www jianshu com p c75
  • 一般报java.lang.NullPointerException的原因有以下几种

    一般报java lang NullPointerException的原因有以下几种 字符串变量未初始化 接口类型的对象没有用具体的类初始化 比如 List lt 会报错 List lt new ArrayList 则不会报错了 当一个对象的
  • 如何创建与框架无关的JavaScript插件

    本文旨在介绍个人在研读源码的时的一些浅薄理解 希望能对各位有一些帮助 本文将对所有可能遇到的知识点或细节进行注解或链接 跳转 以保证各位读者都能看懂 如果文中有说的不对的或者引导方向不正确的 欢迎各位批评指正 欢迎在评论区交流补充 感谢阅读
  • 【H.264/AVC视频编解码技术详解】八、 熵编码算法(2):H.264中的熵编码基本方法、指数哥伦布编码

    H 264 AVC视频编解码技术详解 视频教程已经在 CSDN学院 上线 视频中详述了H 264的背景 标准协议和实现 并通过一个实战工程的形式对H 264的标准进行解析和实现 欢迎观看 纸上得来终觉浅 绝知此事要躬行 只有自己按照标准文档
  • 关于T5/T5L屏幕触控异常的问题的一些见解

    近段时间在使用迪文屏过程中因为对于迪文产品知识不了解不熟悉 导致在开发或使用的过程中因为操作不当或其他种种原因而导致屏幕触控之后没有反应 触摸偏移或者说按下触控之后屏幕没有相应的动作 在此将近段时间的出现的情况及解决办法总结一下 供其他客户
  • 3.30黄金下跌原因解析;3.31原油及沪金银操作建议

    黄金行情解析 周二黄金价格萎靡不振 持续下行甚至探至1704 56美元 目前正处于1710美元附近苟延残喘 新冠疫苗接种计划复苏 提振投资者转向股票期货价格 避险黄金受到严重挑战 尽管中美地缘政治战从口水战转化成实质的制裁行动 但现时中美两
  • 自制教学用ESP32开发板【ESP32_Py_Board】① 开发环境搭建

    摘要 由于教学需要 自己设计了一款ESP32开发板 用于 短距离无线通信 课堂教学使用 开发板整体效果如下图 该开发板采用Type C接口供电 板载CH340K串口芯片 支持自动下载 240 240全彩SPI接口显示屏 温度传感器DS18B
  • Node.js详解(三):Node.js的安装及基本使用

    文章目录 一 Node js 安装配置 二 nvm介绍及使用 推荐使用node版本管理工具 1 介绍 2 安装 3 基本使用安装 管理nodejs 4 命令提示 三 第一个Node js程序 Hello World 脚本模式 交互模式 一
  • SiC MOSFET应用中出现的串扰问题,提出3种有效应用对策

    针对 SiC MOSFET 模块应用中出现的串扰问题 百度网盘 请输入提取码 提取码9dfv 本文对测量使用的差分探头进行了详细对比 由结果可知采用高带宽和高采样率的示波器和差分探头可测 量得到准确的信号波形 同时分析了串扰问题的产生 机制
  • 基于Xilinx XDMA 的PCIE通信

    基于Xilinx XDMA 的PCIE通信 概述 想实现基于FPGA的PCIe通信 查阅互联网各种转载 基本都是对PCIe的描述 所以想写一下基于XDMA的PCIe通信的实现 PCIe结构仅做简单的描述 笔记 了解详细结构移至互联网 实践实
  • GPT概述

    全局唯一标识分区表 GUID Partition Table 缩写 GPT 是一个实体硬盘的分区结构 它是可扩展固件接口标准的一部分 用来替代BIOS中的主引导记录分区表 传统的主启动记录 MBR 磁盘分区支持最大卷为 2 2 TB ter
  • C++之继承

    目录 1 继承的概念及定义 1 继承的概念 2 继承定义 2 基类和派生类对象赋值转换 3 继承中的作用域 4 派生类的默认成员函数 5 继承与友元 6 继承与静态成员 7 复杂的菱形继承及菱形虚拟继承 1 单继承 2 多继承 3 菱形继承
  • 拆解雪花算法生成规则

    1 介绍 雪花算法 Snowflake 是一种生成分布式全局唯一 ID 的算法 生成的 ID 称为 Snowflake IDs 或 snowflakes 这种算法由 Twitter 创建 并用于推文的 ID 目前仓储平台生成 ID 是用的雪