SPI协议

2023-05-16

物理层:

1.四线制或三线制:四线制时3条总线分别为SCK、MOSI、MISO,片选线为NSS(CS)。三线制与其不同的是MOSI和MISO合并为一条线,端口为双向端口,可输入输出。

(1)NSS:从设备选择信号线,常称为片选信号线,当有多个SPI从设备与SPI主机相连时,设备的其他信号线SCK、MOIS及MISO同时并联到相同的SPI总线上,即无论有多少个从设备,都共同使用这3条总线,而每个从设备都有独立的一条NSS信号线,本信号线独占主机的一个引脚,即有多少个从设备,就有多少条片选线。SPI协议使用NSS信号线来寻址,当主机要选择从设备时,把该从设备的NSS信号线设置为低电平,该从设备即被选中,即片选有效,主机便开始与被选中的从机通信。所以SPI通信以NSS线置低电平为开始信号,以NSS线被拉高作为结束信号

(2)SCK:时钟信号线,用于通信数据同步。它由通信主机产生,决定了通信速率,两个设备之间通信时,通信速率受限于低速设备。

(3)MOSI:主设备发送,从设备接收。

(4)MISO:主设备接收,从设备发送。

2.四线制时为全双工方向同步通信,三线制时为半双工方向同步通信。

协议层:

1.SPI基本通信过程

NSS、SCK、MOSI信号都由主机控制产生,而MISO的信号由从机产生,主机通过该信号线读取从机的数据。MOSI与MISO的信号只在NSS为低电平的时候才有效,在SCK的每个时钟周期,MOSI和MISO传输一位数据。

2.通信的起始和停止信号

NSS又由高变低,是SPI通信的起始信号。NSS由低变高,是SPI通信的停止信号,表示本次通信结束。

3.数据有效性

SPI使用MOSI及MISO信号线来传输数据,使用SCK信号线进行数据同步。MOSI及MISO数据线在SCK的每个时钟周期传输一位数据,且数据输入输出是同时进行的。数据传输时,MSB先行或LSB先行并没有作硬件规定,但要保证两个SPI通信设备之间使用同样的协定,一般都会采用MSB先行模式。SPI每次数据传输可以为8位或者16位为单位,每次传输的单位数不受限制。

4.CPOL时钟极性和CPHA时钟相位

时钟极性CPOL是指SPI通信设备处于空闲状态时,SCK信号线的电平信号。CPOL为1时,空闲时SCK为高电平;为0时,空闲时SCK为低电平。

时钟相位CPHA是指数据的采样时刻。当CPHA=0时,MOSIO或者MISO数据线上的信号将会在SCK时钟线的“奇数边沿”被采样,当CPHA=1时,数据在SCK的“偶数边沿”被采样

所以,SPI共四种通信模式,可自行分析下面两图。主机与从机需要工作在相同的模式下才可以正常通信。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

SPI协议 的相关文章

  • RTT WK2412 spi-uart

    1 添加软件包 xff0c 打开硬件 2 代码里根据硬件配置spi span class token macro property span class token directive hash span span class token
  • STM32F407用wk2124芯片编写SPI转四路串口驱动

    目录 引言 一 SPI通信配置 1 GPIO初始化设置 2 SPI参数配置 3 读写函数 4 速度设置 二 WK2124逻辑代码编写 1 片选初始化 2 写寄存器函数 3 读寄存器函数 4 写FIFO函数 5 读FIFO函数 6 WK212
  • I.MX6ULL的SPI通信

    简述 SPI是串行外设接口 xff08 Serial Peripheral Interface xff09 的缩写 xff0c 相比于I2C最高400bps的传输速度 xff0c SPI每秒可以传输的数据可以高达几十M甚至上百Mbit 1
  • pixhawk px4 spi设备驱动

    此篇blog是以nuttx官网介绍为出发点 xff0c 先分析如何初始化的 xff0c 再分析如何读取传感器数据的 xff0c 最后对比了字符型设备操作和spi驱动的实现方式的差别 如有错误还请指正 6 字符型设备 所有的结构体和API都在
  • Linux Platform总线+SPI总线分析

    2015 07 1 11 20 本文以MPC8308 powerpc架构 xff0c HX软件包为依据 xff0c 详细内容可参考源码 CPU e300c3MPC8308 400MHz BOARD Freescale MPC8308ERDB
  • 【STM32】基于SPI的OLED显示屏与DHT20温湿度采集显示数据

    STM32 基于SPI总线的OLED显示屏与DHT20温湿度采集显示数据 一 SPI通讯协议二 关于0 96英寸OLED模块三 硬件连接四 示例代码五 代码修改与撰写六 屏幕歌词滚动1 滚屏设置2 代码撰写 七 展示八 DHT20温湿度采集
  • STM32F4 SPI RX/TX DMA 读写FLASH数据

    STM32 使用DMA读写FLASH数据需要注意以下几点 xff1a 1 SPI全双工模式下 xff0c 无论读写FLASH数据均需要同时使能RX TX DMA 2 写数据时回读数据应当丢弃 xff0c 读数据时应当发送0xff来启动SPI
  • SPI简介

    SPI全称是Serial Perripheral Interface xff0c 也就是串行外围设备接口 SPI是Motorola公司推出的一种同步串行接口技术 xff0c 是一种高速 xff0c 全双工的同步通信总线 SPI时钟频率相比I
  • 总线协议一(UART/RS232/RS485/IIC/SPI)

    目录 基础概述 xff1a 一 UART xff08 为串口通信方式 xff09 二 RS232协议 三 RS485协议 四 I2C总线协议 五 SPI总线 六 I2C和SPI的区别 基础概述 xff1a 总线的本质就是一根导线 xff0c
  • SPI通信协议详解

    SPI是Serial Peripheral Interface的缩写 xff0c 意即串行外设接口 SPI是一种高速的 全双工 同步通信总线 xff0c 常用于处理器与板载外设 xff08 比如Flash存储器 实时时钟芯片 AD DA芯片
  • day3. -2 NX的SPI操作

    1 NVIDIA在线文档 https docs nvidia com jetson l4t index html page Tegra 20Linux 20Driver 20Package 20Development 20Guide hw
  • nRF SPI 与 TWI 操作相关 (BMI088 与 MLX90614 举例)

    SPI0 与 TWI0 的 ID相同 xff0c SPI0 与 TWI0 的 ID相同 编译时有报错 若要避免 xff0c 有两个方法 1 使用不同ID外设 2 使用模拟SPI或模拟IIC nRF SPI 初始化 sdk config h
  • 【STM32】HAL库-SPI

    3线全双工同步传输 带或不带第三根双向数据线的双线单工同步传输 8或16位传输帧格式选择 主或从操作 支持多主模式 8个主模式波特率预分频系数 最大为fPCLK 2 从模式频率 最大为fPCLK 2 主模式和从模式的快速通信 主模式和从模式
  • SPI基础概念

    文章目录 目的 物理接线 极性和相位 信号时序 总结 目的 SPI Serial Perripheral Interface 是一种非常常用的全双工接口 这个接口在非常简单的机制下达到了比较高的通讯速度 比它通讯速度更高的常见的要不是并口
  • 沁恒CH32V307使用记录:SPI基础使用

    文章目录 目的 基础说明 使用演示 其它补充 总结 目的 SPI是单片机中比较常用的一个功能 这篇文章将对CH32V307中相关内容进行说明 本文使用沁恒官方的开发板 CH32V307 EVT R1沁恒RISC V模块MCU赤兔评估板 进行
  • 各种通信接口的简单对比

    对比表 同步方式与异步方式的主要区别在于 是否传输时钟信号 只要是通訊前雙方需要設定相同波特率的 都是異步傳輸方式 异步传输 Asynchronous Transmission 每次异步传输的信息都以一个起始位开头 它通知接收方数据已经到达
  • I2C与SPI通信总线协议

    仅以寄存器地址为8Bit的器件为例 例如MPU6500 LSM6DS3 I2C通信协议 I2C 的要点是了解I2C通信帧的组成部分 START起始位 STOP停止位 ACK NACK信号 从机器件地址 从机寄存器地址 I2C读的时序比较繁琐
  • 如何用 C 语言从串行(SPI)连接读取数据?

    我正在尝试编写一个程序 该程序将安装在 Linux MCU Raspberry Pi 上 该程序将读取从另一个 MCU 我将自己构建的自制程序 发送到它的串行数据 我研究了如何做到这一点 并认为我有 大局 但仍然缺少一些东西 其一 我需要启
  • STM32F4 板上的 SPI 从机设置

    我正在尝试通过主从配置中的 SPI 在两个 STM32F4 发现板之间进行通信 我已经有了主设备的代码 但我对需要对从设备的 SPI 初始化进行的更改感到有点困惑 我还想在主机发送数据时实现中断 而不是让从机一直轮询 RXNE 寄存器 但是
  • 无法在 BeagleBone Green Wireless 上配置 SPI0

    注 所选答案为解决该问题的原始答案 更多详细信息请参阅下面的补充答案 我无法在 BeagleBone Green Wireless BBGW 上配置 SPI0 我试图在不使用覆盖层的情况下实现这一目标 仅使用纯 DeviceTree dev

随机推荐

  • 联想小新pro13笔记本外接显示屏没信号

    step1 关机 step2 拔下电源 step3 安住 fn 43 s 43 v键 xff0c 开机 xff08 开不了机 xff0c 我重复了几次 xff09 step4 插电源开机 xff0c 扩展屏幕正常
  • C51内存类型

    bdata bdata内存类型只能用于声明变量 您不能声明bdata函数 该存储器使用8位地址直接访问 xff0c 是8051的片内位可寻址RAM 用bdata类型声明的变量是位可寻址的 xff0c 可以用位指令读写 code 代码存储器类
  • MQTT问题

    是否存在c gt ping outstanding 61 1 的后一秒就触发TimerIsExpired amp c gt last received span class token keyword int span span class
  • Failed to start apt-news.service Failed to start esm-cache.service

    luozw 64 luozw vpc etc apt apt conf d span class token function sudo span span class token function apt get span update
  • stm中断优先级理解+抢占优先级和相应优先级

    一 抢占优先级比子优先级的优先权更高 xff0c 这意味抢占优先级更高的中断会先执行 xff0c 而不管子优先级的优先权 xff0c 数值越低优先级越高 二 同理 xff0c 如果抢占优先级相同 xff0c 那么就会比较子优先级 xff0c
  • Realsense D435基于ROS跑通ORBSLAM2

    Realsense D435基于ROS跑通ORBSLAM2 系统ubuntu16 04 ROS Kinetic 相机RealsenseD435 SLAM系统 xff1a ORBSLAM2 一 安装Realsense的SDK 官方链接 htt
  • Qt学习:综合案例应用-上(翻金币小游戏)

    本案例是对Qt的基本控件 xff0c 事件处理 xff0c 资源文件的使用等知识的综合应用 以及一些开发思想和逻辑控制 首先了解下案例的文件构成 头文件 xff1a mainwindow h chooselevelscene h plays
  • 在TX2上运行realsenseD435摄像头

    在TX2上运行realsenseD435 先给出相关的链接在TX2上安装realsense SDK库在TX2上安装realsense SDK库 先给出相关的链接 github 上的一些链接 realsense SDK库 xff1a http
  • docker build 后面为什么要跟个 .

    我们在构建镜像文件时无非是使用 xff1a docker build t test ubuntu v1 或者 docker build f docker test Dockerfile 来进行构建镜像 xff0c 用第一个命令时任务 指代的
  • 微机原理中地址总线、数据总线与内存容量之间的关系

    今天在复习微机原理的时候 xff0c 看到一个概念 xff1a 存储总量 61 存储单元个数 存储字长 xff0c 然后存储单元个数 61 2 地址总线位数 xff0c 存储字长和数据总线位数有关 xff0c 如果是这样 xff0c 那么
  • HDLC——高级数据链路控制(HDLC,High-level Data Link Control)

    一 HDLC概述 1 1 HDLC的发展历史 高级数据链路控制 xff08 High Level Data Link Control或简称HDLC xff09 xff0c 是一个在同步网上传输数据 面向比特的数据链路层协议 xff0c 它是
  • 差分技术:LVDS(低压差分信号)、MLVDS(多点低压差分信号)的区别与应用场景

    差分传输是一种信号传输的技术 xff0c 区别于传统的一根信号线一根地线的做法 xff0c 差分传输在这两根线上都传输信号 xff0c 这两个信号的振幅相同 xff0c 相位相反 在这两根线上的传输的信号就是差分信号 信号接收端比较这两个电
  • 小白能理解的奈奎斯特采样及延伸出的理论

    一 取样定理 其实奈奎斯特采样有两种方式 xff0c 一种是矩形脉冲采样 xff0c 一种是冲激采样 xff0c 采样方式如下图 我们在不计算数学公式的情况下来讲解 xff0c 只是让大家明白是这么回事 xff0c 具体为什么是这样 xff
  • 单边谱和双边谱

    实际中 xff0c 只会有单边谱 xff0c 并不会有负频率的信号 在引入欧拉公式后 xff0c 出现了双边谱 单边谱转换为双边谱 xff0c 幅度会降低一半 xff0c 其他不变
  • 小白也能搞通UDP通信(88E1111 RGMII 接口)

    一 网络协议 下表描述了整个从上到下的网络协议层 xff1a 这些网络协议在FPGA实际开发的过程中用到的就是传输层 网络层 数据链路层和物理层 xff0c 在我们的举例中用到UDP IP ARP协议 xff0c 物理层就用88E1111
  • 485通讯和modbus通讯协议

    485通信 xff1a 采用差分信号 xff1a A比B电压高是1 xff0c A比B电压低是0 xff0c 电压高低值在0 2V 6V之间 硬件连接上 xff1a 所有A接到一起 xff0c 所有B接到一起AB之间要加匹配电阻100欧到1
  • MODBUS RTU

    Modbus xff1a 是一种单主 从通信协议 MODBUS网络上只有一个主站 xff0c 主站在MODBUS网络没有地址 xff0c 从站的地址范围为0 247 xff0c 其中0为广播地址 xff0c 从站的实际地址为1 247 MO
  • TM4C123-HWREG()及外设寄存器地址说明

    参考文件 xff1a ti TivaWare C Series 2 1 4 178 inc hw types hti TivaWare C Series 2 1 4 178 inc hw memmap htm4c123gh6pz datas
  • I2C协议

    物理层 xff1a 1 一个I2C总线中可连接多个I2C通信设备 xff0c 支持多个主机及多个从机 2 两线制 xff1a 一条双向串行通信的数据线 xff08 SDA xff09 xff0c 一条串行时钟线 xff08 SCL xff0
  • SPI协议

    物理层 xff1a 1 四线制或三线制 xff1a 四线制时3条总线分别为SCK MOSI MISO xff0c 片选线为NSS xff08 CS xff09 三线制与其不同的是MOSI和MISO合并为一条线 xff0c 端口为双向端口 x