嵌入式Linux(8):字符设备驱动--注册字符类设备

2023-05-16

文章目录

  • 前言
  • 上代码

前言

杂项设备
注册杂项设备:

misc_register(&misc_dev);

注销杂项设备:

misc_deregister(&misc_dev);

字符类设备
文件:include/linux/cdev.h

struct cdev {
	struct kobject kobj;
	struct module *owner;
	const struct file_operations *ops;
	struct list_head list;
	dev_t dev;
	unsigned int count;
} __randomize_layout;

步骤流程:

  1. 定义一个cdev结构体。
  2. 使用cdev_init函数初始化cdev结构体成员变量。
void cdev_init(struct cdev *, const struct file_operations *);

参数:

  • 第一个:要初始化的cdev结构体
  • 第二个:文件操作集:cdev->ops = fops;//实际就是把文件操作集写ops
  1. 使用cdev_add函数注册到内核。
int cdev_add(struct cdev*, dev_t, unsigned);

参数:

  • 第一个:cdev的结构体指针。
  • 第二个:设备号。
  • 第三个:次设备号的数量。
  1. 创建字符设备节点

字符设备注册完以后不会自动生成设备节点(杂项设备在注册完以后就会自动生成设备节点)。

上面的代码里面没有自动创建字符设备节点。

需要使用mknod命令(命令行手动输入创建)创建一个设备节点。
格式:mknod 名称 类型 主设备号 次设备号
举例:mknod /dev/test c 236 0

上代码

chrdev.c

#include <linux/init.h> // 包含宏定义
#include <linux/module.h> // 包含初始化、加载模块的头文件
#include <linux/fs.h>
#include <linux/kdev_t.h>
#include <linux/cdev.h>


#define DEVICE_NUMBER 1
#define DEVICE_SNAME   "schrdev"
#define DEVICE_ANAME   "achrdev"

#define DEVICE_MINOR_NUMBER  0

static int major_num, minor_num;

struct cdev cdev;

int chrdev_open(struct inode *inode, struct file *file)
{
    printk("chrdev_open\n");
    return 0;
}

struct file_operations chrdev_ops = {
    .owner = THIS_MODULE,
    .open = chrdev_open
};

module_param(major_num, int, S_IRUSR);
module_param(minor_num, int, S_IRUSR);


static int hello_init(void)
{
    dev_t dev_num;
    int ret;

    if(major_num)
    {
        printk("major_num: %d\n", major_num);
        printk("minor_num: %d\n", minor_num);

        dev_num = MKDEV(major_num, minor_num);

        ret = register_chrdev_region(dev_num, DEVICE_NUMBER, DEVICE_SNAME);

        if(ret < 0)
        {
            printk("register_chrdev_region error\n");
        }
        else
            printk("register_chrdev_region ok\n");
    }
    else
    {
        ret = alloc_chrdev_region(&dev_num, DEVICE_MINOR_NUMBER, DEVICE_NUMBER, DEVICE_ANAME);
        if(ret <0)
        {
            printk("alloc_chrdev_region error\n");
        }
        else
            printk("alloc_chrdev_region ok\n");

        major_num = MAJOR(dev_num);
        minor_num = MINOR(dev_num);

        printk("major_num: %d\n", major_num);
        printk("minor_num: %d\n", minor_num);
    }

	printk("major_num = %d, minor_num = %d\n",major_num, minor_num);

    cdev.owner = THIS_MODULE;
    cdev_init(&cdev, &chrdev_ops);

    cdev_add(&cdev, dev_num, DEVICE_NUMBER);

	return 0;
}
static void hello_exit(void)
{
    unregister_chrdev_region(MKDEV(major_num, minor_num), DEVICE_NUMBER);

    cdev_del(&cdev);
    
	printk("Bye Bye\n");
}

/* 模块的入口 */
module_init(hello_init);
/* 模块的出口 */
module_exit(hello_exit);

/* 模块声明 */
MODULE_LICENSE("GPL");

Makefile

# 定义内核源码的目录
KERN_DIR ?= /home/liefyuan/Linux/rk356x_linux/kernel
# 定义当前目录
PWD        := $(shell pwd)
# 要生成的内核模块
obj-m += chrdev.o

all:
	make -C $(KERN_DIR) M=$(PWD) modules

clean:
	rm -rf *.order *o *.symvers *.mod.c *.mod *.ko

编译模块

export ARCH=arm64 
export CROSS_COMPILE=aarch64-linux-gnu-
make

需要手动创建设备节点:

[root@RK356X:/opt]# insmod chrdev.ko
[29223.082788] alloc_chrdev_region ok
[29223.082898] major_num: 236
[29223.08290[root@RK356X:/opt]# 7] minor_num: 0
[29223.082915] major_num = 236, minor_num = 0

[root@RK356X:/opt]# mknod /dev/test c 236 0
[root@RK356X:/opt]# ls /dev/test
/dev/test

app.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main(int argc,char *argv[])
{
	int fd;
    //打开设备节点
	fd = open("/dev/test",O_RDWR);
	if(fd < 0)
	{
        //打开设备节点失败
		perror("open error \n"); 
		return fd;
	}
	close(fd);
	return 0;
}

编译

aarch64-linux-gnu-gcc app.c -o app.armelf

运行:

[root@RK356X:/opt]# ./app.armelf
[29334.729056] chrdev_open

没有问题。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

嵌入式Linux(8):字符设备驱动--注册字符类设备 的相关文章

  • 嵌入式常见英文2500词总结

    目录 嵌入式硬件常见英文总结 嵌入式软件常见英文总结 电子技术专业英语 嵌入式硬件常见英文总结 block diagram xff0c 框图 figure xff0c 图形 xff0c 图标 processor xff0c 处理器 Mirr
  • 我的2013—弃金融IT,从SAP业务

    我的2013 xff0c 是动荡的一年 xff1b 这一年 xff0c 我跳巢了 xff1b 这一年 xff0c 我换行业了 xff1b 这一年 xff0c 我离开了生活5年的长春 xff0c 来到成都 xff1b 这一年 xff0c 我放
  • STM32实战总结:HAL之电机

    电机基础知识参考 xff1a 51单片机外设篇 xff1a 电机 路溪非溪的博客 CSDN博客 无刷电机和有刷电机 先详细了解有刷电机 xff1a 带你了解 xff08 有刷 xff09 电机工作原理 哔哩哔哩 bilibili 再详细了解
  • F407标准库之时钟系统

    主要参考正点原子数据手册和源码资料等 第19讲 STM32时钟系统精讲 哔哩哔哩 bilibili 此处记录较为重要或者较易出错的一些遗漏之处 xff0c 作为补充 一般而言 xff0c 时钟越高 xff0c 速度越快 xff0c 但同时抗
  • F407标准库之定时器

    主要参考正点原子数据手册和源码资料等 第31 通用定时器基本原理讲解 哔哩哔哩 bilibili 此处记录较为重要或者较易出错的一些遗漏之处 xff0c 作为补充 定时器中断 定时器相关的库函数主要集中在固件库文件 stm32f4xx ti
  • F407标准库之基础知识

    关于STM32的结构体封装 在STM32中 xff0c 有两种容易弄混的结构体封装 第一种是系统对底层寄存器的封装 结构体类型定义好之后 xff0c 是不会分配地址空间的 xff0c 此时只是个类型定义 xff0c 之后使用的时候 xff0
  • c++架构师需要掌握哪些知识

    目录 本文技术梳理主要针对于三类人群的技术需求 c c 43 43 Linux服务器端开发岗位分析 经常被问到的问题 xff1a 技术体系建立的好处 c c 43 43 Linux服务器开发技术学习路径 一 精进基石 二 高性能网络设计 三
  • cmake:使用execute_process调用shell命令或脚本

    CMake可以通过execute process调用shell命令或者脚本 xff0c 其原型如下 xff1a execute process COMMAND lt cmd1 gt args1 COMMAND lt cmd2 gt args
  • 树莓派3B+上安装ubutun mate 18.04.2

    1 准备16G以上储存卡 xff0c 读卡器 2 准备两个软件 xff1a SDCardFormatter Win32DiskImager分别用于储存卡格式化和写入系统文件 链接如下 xff1a 链接 xff1a https pan bai
  • linux应用编程--思维导图

    思维导图软件是xmind 下载源文件点击打开链接
  • 深度学习中Batch、Iteration、Epoch的概念与区别

    在神经网络训练中 xff0c 一般采用小批量梯度下降的方式 Batch Epoch Iteration 就是其中的重要的概念 我们要理解懂得它们都是什么以及它们之间的区别 1 Batch 每次迭代时使用的一批样本就叫做一个Batch xff
  • STM32使用CubeMAX配置的串口中断接收方法

    STM32使用CubeMAX配置的串口中断接收方法 目录 1 定位串口中断发生的地方 2 处理串口中断接收的流程是 xff1a xff08 1 xff09 初始化串口 xff08 2 xff09 在main中第一次调用接收中断函数 xff0
  • SAP 寻找增强点的方法

    SAP中寻找增强的实现方法 SAP 增强已经发展过几代了 xff0c 可参考 SAP 标准教材 BC425 和 BC427 简单的说SAP的用户出口总共有四 代 1 第一代 基于源代码的增强 SAP提供一个空代码的子过程 xff0c 在这个
  • SNMPV3的实现原理

    在snmp发展到V3版本后 xff0c 把snmp的安全性提升到一个新高度 xff0c 这同时也带来了实现上的复杂性 在02年 xff0c 03年我都曾经想进一步的了解它的实现 xff0c 但都没什么进展 这次在实现Csnmp的过程中 xf
  • ubuntu更新错误:dists/artful/main/binary-arm64/Packages 404 Not Found

    Failed to fetch http archive ubuntu com ubuntu dists artful main binary arm64 Packages 404 Not Found IP 91 189 88 162 80
  • 个人公众号开通啦!!!!

    已经开通了个人微信公众号 xff1a 编程时光机 以后会在公众号里和大家分享知识和生吞活 xff0c 欢迎大家关注 xff01 xff01
  • 小白学AI系列(一)-- AI简史

    经过一段时间的酝酿 xff0c 小白学AI系列也正是开始了 xff01 小编将从三个阶段和大家一起入门人工智能 xff0c 掌握常用机器学习算法和数据分析技巧 小编专业为数据融合方向 xff0c 也曾接触过机器学习 xff0c 但由于人工智
  • 小白学AI系列(二) -- Python模块和函数

    原文地址 xff1a 小白学AI系列 xff08 二 xff09 Python模块和函数 今天的内容是带大家学习解释性语言 Python 小编有学过一段时间的C 43 43 和Matlab 相对于二者而言 xff0c Python是作为学习
  • PX4固定翼调试校准流程及实验相关问题记录分析

    pixhawk固定翼调试流程 对于px4固件 xff0c 其对应选择的一般是qgroundcontrol地面站 xff08 APM一般使用Mission Planner xff09 本次调试的固件版本是1 6 5dev xff08 最新的固
  • Ubuntu16.04下PX4环境快速搭建及uORB通信机制

    Ubuntu16 04下的环境搭建 之前搭建PX4环境常常编译不通 xff0c cmake gcc 以及交叉编译器gcc arm none eabi的版本问题导致make固件报错 xff0c 好不容易编译通过了 xff0c 在进行安装jMA

随机推荐

  • PX4固件通过UART连接串口读取超声波,和树莓派3通信

    添加串口读取程序 首先在Firmware msg文件夹下添加rw uart msg span class hljs keyword char span span class hljs number 5 span datastr span c
  • PX4自主飞行相关问题

    调试入坑 赶在回去之前把10月1日新校区试飞相关问题记录一下 首先是调试相关问题 调试具体流程 在校准遥控器时经常出现校准一半就停止的问题 xff0c 期初认为是固件问题 xff0c 换了1 6 5 1 6 3 xff0c 1 5 5三个固
  • PID控制器及其C++实现

    PID控制器原理 PID控制器实际上是对偏差的控制 其原理图如下 其数学的表达如下 u x 61 K p e r r t 43 1 T e r r t d t 43 T D d e r r t d t u x
  • Oracle Systimestamp 函数

    在Oracle PLSQL中 xff0c Systimestamp 函数返回本机数据库上当前系统日期和时间 包括微秒和时区 Systimestamp 函数的语法是 xff1a systimestamp 应用于 xff1a Oracle 9i
  • px4源码解读之fw_att_control

    目录 程序和控制流程源码解读总结 程序和控制流程 个人简单的总结了一下整个程序的流程如下 整个的控制流程图可以在官网中找到 源码解读 在解读源码之前 需要提几个公式 第一个就是协调转弯中的偏航控制 也就是流程图中为什么输入是空速 p 61
  • 安装Mavlink generator出现UnicodeEncodeError错误

    最近在看mavlink 在执行官网的操作时出现了问题 问题如下 span class hljs constant Exception span span class hljs keyword in span span class hljs
  • mc_att_control基础知识:向量运算和罗德里格斯旋转

    向量的叉乘和点乘 在我们的mc att control中有我们的向量的点乘和叉乘 一般遇到的都是三维的运算 S O 3 S O 3 李群 向量点乘 假设向量 a 61 a 1 a 2 a 3
  • 低通滤波器和高通滤波器的程序实现原理推导

    傅立叶变换 拉普拉斯变换和Z变换 对于信号分析而言 傅立叶变换是必不可少的 我们都知道傅立叶变换是把系统从时域变换到频域进行分析 那么拉普拉斯变换和Z变换是干什么的 简单的来说 由于傅里叶变换的收敛有一个狄利克雷条件 xff0c 要求信号绝
  • PX4源码解读之fw_pos_control_l1

    固定翼的位置控制是一个很重要问题 它不同于旋翼的控制 需要对速度和高度进行解耦控制 并且其不能像旋翼那样进行悬停 其转弯的时候有一个转弯半径 本博客不会对源码进行详细的解读 主要是分享一些自己读源码时的资料 自己读的过程中也有注释 想要的同
  • 四元数表示旋转的理解

    哈密尔顿 为了纪念四元数的发明者哈密尔顿 爱尔兰于1943年11月15日发行了下面这张邮票 哈密尔顿简直是个天才 哈密尔顿从小到进入大学之前没有进过学校读书 xff0c 他的教育是靠叔父传授以及自学 他找到了法国数学家克莱罗 xff08 C
  • mc_att_control源码解析

    目录 源码分析内环控制外环控制 之前写了博客分析了一下旋翼姿态控制的基础知识 mc att control基础知识 这次就对照代码将整个旋翼姿态控制过程呈现一遍 先看一下整个程序的框图 从图中可以看到 实际上整个控制分成内外两个环进行控制
  • PX4下载指定版本代码和刷固件的三种方式

    由于之前下载的是1 7版本的代码 现在v5版本的px4需要最新的代码固件 因此这里记录一下 查看自己代码版本 查看自己仓库代码版本的命令如下 git describe always tags 输出 v1 7 0 rc3 9 g0e1c7eb
  • Python怎么调用matlab的

    文章目录 环境的安装安装合适的python环境安装用于 Python 的 MATLAB 引擎 API 环境的安装 安装合适的python环境 研究这个也是在知乎上突然看到的 xff0c 以前python写的多 xff0c 现在由于工作需要
  • insert语句中sequence的使用方法

    我们常常在表中需要插入一些自动增长的值 一方面 我们可以手动添加这些值 xff0c 另一方面 oracle提供的sequence可以帮助我们实现插入的值自动增长 而不需要我们手动的提供值 我们需要做的就是设置好sequence的初值和增长值
  • Ubuntu 安装 vnc server

    查看Ubuntu系统版本 xff1a sudo lsb release a 安装Xfce桌面环境 xff1a sudo apt install xfce4 xfce4 goodies 配置gnome桌面环境 xff0c 参考 xff1a h
  • 嵌入式Linux(4):应用层和内核层数据传输

    文章目录 简介1 如果在应用层使用系统IO对设备节点进行打开 xff0c 关闭 xff0c 读写等操作会发生什么呢 xff1f 写个例子2 假如驱动层的file operations里面没有实现read之类的操作函数 xff0c 会发生什么
  • 嵌入式Linux(5):物理地址到虚拟地址映射

    文章目录 理论知识1 使能了MMU以后有什么好处呢 xff1f 2 MMU非常复杂 xff0c 那么我们如何完成物理地址到虚拟地址的转换呢 xff1f 3 如何查看哪些物理地址被映射过了呢 xff1f 实例 RK3568 理论知识 在Lin
  • 嵌入式Linux(6):驱动模块传参

    文章目录 1 什么是驱动传参 xff1f 2 驱动传参有什么作用 xff1f 3 怎么给我们的驱动传参数 xff1f 传递普通参数传递数组 1 什么是驱动传参 xff1f 驱动传参就是在安装驱动模块 xff08 ko文件 xff09 的时候
  • 嵌入式Linux(7):字符设备驱动--申请设备号

    文章目录 1 字符设备和杂项设备的区别2 注册字符类设备号的两个办法第一种 xff1a 静态分配一个设备号第二种 xff1a 动态分配注销设备号 写代码不带参数测试 xff08 动态分配 xff09 xff1a 带参数测试 xff08 静态
  • 嵌入式Linux(8):字符设备驱动--注册字符类设备

    文章目录 前言上代码 前言 杂项设备 注册杂项设备 xff1a span class token function misc register span span class token punctuation span span clas