Vulkan实战之Window surface

2023-05-16

文章目录

      • 创建window surface
      • 查询演示支持
      • 创建surface队列
      • 最终代码

由于Vulkan是一个平台无关的API,因此它不能自己直接与窗口系统接口交互。为了在Vulkan和窗口系统之间建立连接并将结果显示到屏幕上,我们需要使用WSI(窗口系统集成)扩展。在本章中,我们将讨论第一个,即VK_KHR_surface。它公开了一个VkSurfaceKHR对象,该对象表示要呈现渲染图像的抽象surface类型。我们程序中的surface将由我们已经用GLFW打开的窗口支持。

VK_KHR_surface扩展是一个实例级扩展,我们实际上已经启用了它,因为它包含在由glfwGetRequiredInstanceExtensions返回的列表中。该列表还包括一些我们将在接下来的几章中使用的其他WSI扩展。

需要在实例创建之后立即创建window surface,因为它实际上会影响物理设备的选择。我们推迟这一点的原因是,window surface是渲染目标和表示的更大主题的一部分,解释将打乱基本设置。还应该注意的是,如果您只需要屏幕外渲染,那么window surface在Vulkan中是完全可选的组件。Vulkan允许你做到这一点,而不需要像创建一个不可见窗口(OpenGL所必需的)。

创建window surface

首先在调试回调的正下方添加一个surface类成员。

VkSurfaceKHR surface;

尽管VkSurfaceKHR对象及其用法与平台无关,但它的创建却不是,因为它依赖于窗口系统的细节。例如,它需要Windows上的HWND和HMODULE句柄。因此,有一个特定于平台的扩展,在Windows上称为VK_KHR_win32_surface,也自动包含在glfwGetRequiredInstanceExtensions的列表中。

我将演示如何使用这个平台特定的扩展来创建Windows上的surface,但我们不会在本教程中实际使用它。使用像GLFW这样的库,然后继续使用特定于平台的代码是没有任何意义的。GLFW实际上有glfwCreateWindowSurface为我们处理平台差异。尽管如此,在我们开始依赖它之前,看看它在幕后的作用还是很好的。

要访问本地平台功能,你需要更新顶部的include:

#define VK_USE_PLATFORM_WIN32_KHR
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#define GLFW_EXPOSE_NATIVE_WIN32
#include <GLFW/glfw3native.h>

因为window surface是一个Vulkan对象,所以它带有一个需要填充的VkWin32SurfaceCreateInfoKHR结构体。它有两个重要的参数:hwnd和instance。这些是窗口和流程的手柄。

VkWin32SurfaceCreateInfoKHR createInfo{};
createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
createInfo.hwnd = glfwGetWin32Window(window);
createInfo.hinstance = GetModuleHandle(nullptr);

glfwGetWin32Window函数用于从GLFW窗口对象中获取原始HWND。GetModuleHandle调用返回当前进程的HINSTANCE句柄。

之后,可以使用vkCreateWin32SurfaceKHR创建surface,其中包括实例的参数,surface创建细节,自定义分配器和surface句柄要存储的变量。从技术上讲,这是一个WSI扩展函数,但它是如此常用,以至于标准的Vulkan加载程序包含它,因此与其他扩展不同,您不需要显式加载它。

if (vkCreateWin32SurfaceKHR(instance, &createInfo, nullptr, &surface) != VK_SUCCESS) {
    throw std::runtime_error("failed to create window surface!");
}

该过程与Linux等其他平台类似,其中vkCreateXcbSurfaceKHR将XCB连接和窗口作为X11的创建细节。

glfwCreateWindowSurface函数对每个平台使用不同的实现来执行这个操作。现在我们将把它集成到我们的程序中。添加一个createSurface函数,在实例创建和设置debugmessenger之后从initVulkan调用。

void initVulkan() {
    createInstance();
    setupDebugMessenger();
    createSurface();
    pickPhysicalDevice();
    createLogicalDevice();
}

void createSurface() {

}

GLFW调用接受简单的参数而不是结构体,这使得函数的实现非常简单:

void createSurface() {
    if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
        throw std::runtime_error("failed to create window surface!");
    }
}

参数是VkInstance, GLFW窗口指针,自定义分配器和指向VkSurfaceKHR变量的指针。它只是通过相关平台调用的VkResult传递。GLFW没有提供销毁surface的特殊功能,但这可以通过原始API轻松完成:

void cleanup() {
        ...
        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);
        ...
    }

确保surface在实例之前被销毁。

查询演示支持

尽管Vulkan实现可能支持窗口系统集成,但这并不意味着系统中的每个设备都支持它。因此,我们需要扩展isDeviceSuitable,以确保设备可以将图像呈现到我们创建的surface。由于演示是一个特定于队列的特性,因此问题实际上是找到一个支持向我们创建的surface演示的队列族。

实际上,支持绘图命令的队列族和支持surface的队列族可能不重叠。因此,我们必须考虑到,通过修改QueueFamilyIndices结构,可以有一个不同的表示队列:

struct QueueFamilyIndices {
    std::optional<uint32_t> graphicsFamily;
    std::optional<uint32_t> presentFamily;

    bool isComplete() {
        return graphicsFamily.has_value() && presentFamily.has_value();
    }
};

接下来,我们将修改findQueueFamilies函数,以查找具有显示window surface能力的队列族。检查这一点的函数是vkGetPhysicalDeviceSurfaceSupportKHR,它将物理设备、队列族索引和surface作为参数。在与VK_QUEUE_GRAPHICS_BIT相同的循环中添加对它的调用:

VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

然后简单地检查布尔值并存储表示族队列索引:

if (presentSupport) {
    indices.presentFamily = i;
}

注意,很有可能这些队列最终是相同的队列族,但在整个程序中,我们将把它们视为统一方法的单独队列。然而,您可以添加逻辑来显式地选择在同一队列中支持绘图和surface的物理设备,以提高性能。

创建surface队列

剩下的一件事是修改逻辑设备创建过程,以创建表示队列并检索VkQueue句柄。为句柄添加一个成员变量:

VkQueue presentQueue;

接下来,我们需要有多个VkDeviceQueueCreateInfo结构体来创建来自两个类的队列。一种优雅的方法是创建所需队列所必需的所有唯一队列族的集合:

#include <set>

...

QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()};

float queuePriority = 1.0f;
for (uint32_t queueFamily : uniqueQueueFamilies) {
    VkDeviceQueueCreateInfo queueCreateInfo{};
    queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
    queueCreateInfo.queueFamilyIndex = queueFamily;
    queueCreateInfo.queueCount = 1;
    queueCreateInfo.pQueuePriorities = &queuePriority;
    queueCreateInfos.push_back(queueCreateInfo);
}

修改VkDeviceCreateInfo,使其指向vector:

createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
createInfo.pQueueCreateInfos = queueCreateInfos.data();

如果队列族是相同的,那么我们只需要传递它的索引一次。最后,添加一个调用来检索队列句柄:

vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);

如果队列族相同,两个句柄现在很可能具有相同的值。在下一章中,我们将看看交换链以及它们如何使我们能够将图像呈现到表面。

最终代码

#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#include <iostream>
#include <stdexcept>
#include <vector>
#include <cstring>
#include <cstdlib>
#include <optional>
#include <set>

const uint32_t WIDTH = 800;
const uint32_t HEIGHT = 600;

const std::vector<const char*> validationLayers = {
    "VK_LAYER_KHRONOS_validation"
};

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT* pDebugMessenger) {
    auto func = (PFN_vkCreateDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
    if (func != nullptr) {
        return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
    } else {
        return VK_ERROR_EXTENSION_NOT_PRESENT;
    }
}

void DestroyDebugUtilsMessengerEXT(VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks* pAllocator) {
    auto func = (PFN_vkDestroyDebugUtilsMessengerEXT) vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
    if (func != nullptr) {
        func(instance, debugMessenger, pAllocator);
    }
}

struct QueueFamilyIndices {
    std::optional<uint32_t> graphicsFamily;
    std::optional<uint32_t> presentFamily;

    bool isComplete() {
        return graphicsFamily.has_value() && presentFamily.has_value();
    }
};

class HelloTriangleApplication {
public:
    void run() {
        initWindow();
        initVulkan();
        mainLoop();
        cleanup();
    }

private:
    GLFWwindow* window;

    VkInstance instance;
    VkDebugUtilsMessengerEXT debugMessenger;
    VkSurfaceKHR surface;

    VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
    VkDevice device;

    VkQueue graphicsQueue;
    VkQueue presentQueue;

    void initWindow() {
        glfwInit();

        glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
        glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);

        window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
    }

    void initVulkan() {
        createInstance();
        setupDebugMessenger();
        createSurface();
        pickPhysicalDevice();
        createLogicalDevice();
    }

    void mainLoop() {
        while (!glfwWindowShouldClose(window)) {
            glfwPollEvents();
        }
    }

    void cleanup() {
        vkDestroyDevice(device, nullptr);

        if (enableValidationLayers) {
            DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
        }

        vkDestroySurfaceKHR(instance, surface, nullptr);
        vkDestroyInstance(instance, nullptr);

        glfwDestroyWindow(window);

        glfwTerminate();
    }

    void createInstance() {
        if (enableValidationLayers && !checkValidationLayerSupport()) {
            throw std::runtime_error("validation layers requested, but not available!");
        }

        VkApplicationInfo appInfo{};
        appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
        appInfo.pApplicationName = "Hello Triangle";
        appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.pEngineName = "No Engine";
        appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
        appInfo.apiVersion = VK_API_VERSION_1_0;

        VkInstanceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
        createInfo.pApplicationInfo = &appInfo;

        auto extensions = getRequiredExtensions();
        createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
        createInfo.ppEnabledExtensionNames = extensions.data();

        VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo{};
        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();

            populateDebugMessengerCreateInfo(debugCreateInfo);
            createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*) &debugCreateInfo;
        } else {
            createInfo.enabledLayerCount = 0;

            createInfo.pNext = nullptr;
        }

        if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
            throw std::runtime_error("failed to create instance!");
        }
    }

    void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT& createInfo) {
        createInfo = {};
        createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
        createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
        createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
        createInfo.pfnUserCallback = debugCallback;
    }

    void setupDebugMessenger() {
        if (!enableValidationLayers) return;

        VkDebugUtilsMessengerCreateInfoEXT createInfo;
        populateDebugMessengerCreateInfo(createInfo);

        if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
            throw std::runtime_error("failed to set up debug messenger!");
        }
    }

    void createSurface() {
        if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
            throw std::runtime_error("failed to create window surface!");
        }
    }

    void pickPhysicalDevice() {
        uint32_t deviceCount = 0;
        vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

        if (deviceCount == 0) {
            throw std::runtime_error("failed to find GPUs with Vulkan support!");
        }

        std::vector<VkPhysicalDevice> devices(deviceCount);
        vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

        for (const auto& device : devices) {
            if (isDeviceSuitable(device)) {
                physicalDevice = device;
                break;
            }
        }

        if (physicalDevice == VK_NULL_HANDLE) {
            throw std::runtime_error("failed to find a suitable GPU!");
        }
    }

    void createLogicalDevice() {
        QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

        std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
        std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily.value(), indices.presentFamily.value()};

        float queuePriority = 1.0f;
        for (uint32_t queueFamily : uniqueQueueFamilies) {
            VkDeviceQueueCreateInfo queueCreateInfo{};
            queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
            queueCreateInfo.queueFamilyIndex = queueFamily;
            queueCreateInfo.queueCount = 1;
            queueCreateInfo.pQueuePriorities = &queuePriority;
            queueCreateInfos.push_back(queueCreateInfo);
        }

        VkPhysicalDeviceFeatures deviceFeatures{};

        VkDeviceCreateInfo createInfo{};
        createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

        createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
        createInfo.pQueueCreateInfos = queueCreateInfos.data();

        createInfo.pEnabledFeatures = &deviceFeatures;

        createInfo.enabledExtensionCount = 0;

        if (enableValidationLayers) {
            createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
            createInfo.ppEnabledLayerNames = validationLayers.data();
        } else {
            createInfo.enabledLayerCount = 0;
        }

        if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
            throw std::runtime_error("failed to create logical device!");
        }

        vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
        vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);
    }

    bool isDeviceSuitable(VkPhysicalDevice device) {
        QueueFamilyIndices indices = findQueueFamilies(device);

        return indices.isComplete();
    }

    QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
        QueueFamilyIndices indices;

        uint32_t queueFamilyCount = 0;
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

        std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
        vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

        int i = 0;
        for (const auto& queueFamily : queueFamilies) {
            if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
                indices.graphicsFamily = i;
            }

            VkBool32 presentSupport = false;
            vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

            if (presentSupport) {
                indices.presentFamily = i;
            }

            if (indices.isComplete()) {
                break;
            }

            i++;
        }

        return indices;
    }

    std::vector<const char*> getRequiredExtensions() {
        uint32_t glfwExtensionCount = 0;
        const char** glfwExtensions;
        glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

        std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);

        if (enableValidationLayers) {
            extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
        }

        return extensions;
    }

    bool checkValidationLayerSupport() {
        uint32_t layerCount;
        vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

        std::vector<VkLayerProperties> availableLayers(layerCount);
        vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());

        for (const char* layerName : validationLayers) {
            bool layerFound = false;

            for (const auto& layerProperties : availableLayers) {
                if (strcmp(layerName, layerProperties.layerName) == 0) {
                    layerFound = true;
                    break;
                }
            }

            if (!layerFound) {
                return false;
            }
        }

        return true;
    }

    static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) {
        std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;

        return VK_FALSE;
    }
};

int main() {
    HelloTriangleApplication app;

    try {
        app.run();
    } catch (const std::exception& e) {
        std::cerr << e.what() << std::endl;
        return EXIT_FAILURE;
    }

    return EXIT_SUCCESS;
}
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Vulkan实战之Window surface 的相关文章

随机推荐

  • PX4之代码结构

    PX4开源飞控是目前主流的开源飞控项目 xff0c 被很多公司作为飞控开发的参考 也广泛被用于现在流行的evtol验证机的飞控 xff0c 进行初步的飞行验证 可能大多数AAM以及UAM都离不开PX4 项目代码可以从github下载 git
  • docker更改默认仓库地址

    docker更改默认仓库地址 复制代码 zq 64 ubuntu docker pull h Flag shorthand h has been deprecated please use help Usage docker pull OP
  • 关于Proteus仿真stm32时出现电源与地对接错误的解决方案

    最近开始了stm32的学习 xff0c 但发现在Proteus仿真时总是出现 PROTEUS显示 电路图如下 xff1a 经过一段时间的研究 xff0c 除了之前的要将Design gt Configure Power Rails中的VSS
  • 【ssh】ssh密钥配置无效(如git@github.com: Permission denied (publickey).)

    使用ssh keygen创建密钥后 xff0c 默认会将公司钥保存至 ssh目录下 xff0c 文件名分别为id rsa和id rsa pub xff08 如果你使用的是rsa加密 xff09 这种情况下 xff0c 一般不需要配置其他内容
  • 【Python】NameError: name ‘self‘ is not defined

    NameError name 39 self 39 is not defined 最近开发Python包 xff0c 遇到一个 NameError name self is not defined 问题 在执行 span class tok
  • C/C++关于strcpy、strcat函数使用

    char p1 15 61 34 abcd 34 p2 61 34 ABCD 34 str 50 61 34 xyz 34 strcpy str 43 2 strcat p1 43 2 p2 43 1 printf 34 s 34 str
  • intel RealSense摄像头比较

    1 D415 xff0c D435和D435i xff08 1 xff09 总体对比 xff08 2 xff09 具体对比 相机细节 三个深度相机大小相同 xff08 在毫米内 xff09 xff0c 它们都使用相同的视觉处理器通过USB
  • shell中的#!/bin/bash

    bin bash是指此脚本使用 bin bash来解释执行 其中 xff0c 是一个特殊的表示符 xff0c 其后 xff0c 跟着解释此脚本的shell路径
  • 嵌入式控制器EC是如何运行起来的

    EC的作用在本文中就不谈了 xff0c 百度里面可以找到很多 xff0c 反正像笔记本这样的移动设备 xff0c 都需要EC来做相关的控制 xff0c 具体可以自己去百度 这里主要介绍EC是如何运行起来的 xff0c 其实和CPU是如何运行
  • 如何在C/C++中利用变量来创建变化长度的数组

    在C C 43 43 中可以直接使用 xff1a int a n 创建长度为n的整型数组 xff0c 这种定义数组的方法需要事先确定好数组的长度 xff0c 即 n 必须为常量 xff0c 这意味着 xff0c 如果在实际应用中无法确定数组
  • Host是如何与EC通信的(BIOS通过ACPI协议对EC RAM进行读写)

    文章目录 一 EC RAM是什么 二 使用步骤 1 高级配置和电源接口 ACPI 规范 2 EC RAM读写过程 总结 一 EC RAM是什么 EC提供256字节的可被系统读写的RAM空间 EC的资源 包括电池信息 EC版本等信息 在该RA
  • PX4之飞行控制框架

    PX4的飞行控制程序通过模块来实现 xff0c 与飞控相关的模块主要有commander xff0c navigator xff0c pos control xff0c att control这几个 xff0c 分别可以在src modul
  • 使用树莓派学习Linux驱动开发-02 面向对象/分层/分离驱动设计思想编写LED驱动程序

    系列文章目录 此博客内容根据韦东山嵌入式Linux驱动开发课程书写而来 将课程中用到的代码移植到树莓派4B板子 文章目录 系列文章目录 前言 一 驱动设计思想 分离 二 示例代码 三 操作步骤如下 前言 在上一篇内容中 书写了一个设备驱动程
  • 0.嵌入式控制器EC实战 Embedded Controller开发概述

    文章目录 1 嵌入式控制器EC概述2 EC芯片框图 xff08 IT8502为例 xff09 3 General Purpose I O Port GPIO 4 SMBus xff08 System Management Bus xff0c
  • 12.嵌入式控制器EC实战 SMBus概述

    文章目录 SMBus概述 ACPI规范中的函数返回值含义 SMBus h中的宏定义含义 EC中SMBus各个读写函数分析 bRWSMBus读写函数 在嵌入式控制器EC中 SMBus的起到的作用有两个 第一个是通过SMBus读取智能电池中的相
  • Win10下开机自动启动运行bat脚本并打开cmd运行命令

    场景 xff1a 本菜鸟有一台工作站安装了windows10操作系统 xff0c 机器设置的是开机自动启动 xff0c 但是维护人员无法一直在机房 xff0c 一旦机房断电重启就会导致工作站中运行的程序无法重新启动 xff0c 需要维护人员
  • 银河麒麟V10系统 syslog和kern.log文件过大问题解决,定时清理日志文件

    文章目录 1 新建clear log sh脚本文件 2 设置cron任务 3 解决不执行的方法 需求 在使用银河麒麟V10系统时 var log kern log 和 var log syslog两个文件随着使用的时间增长会一直增大 最后可
  • 2.龙芯2k1000 linux3.10内核编译过程

    龙芯2k1000 linux3 10内核编译过程 文章目录 龙芯2k1000 linux3 10内核编译过程 xff08 一 xff09 在Ubuntu环境下载并配置交叉编译链 xff08 二 xff09 下载linux3 10内核源码 x
  • Vulkan实战之逻辑设备和队列

    文章目录 介绍指定要创建的队列指定使用的设备特性创建逻辑设备检索队列句柄最终代码 介绍 在选择要使用的物理设备之后 xff0c 我们需要设置一个逻辑设备来与它接口 逻辑设备创建过程类似于实例创建过程 xff0c 并描述了我们想要使用的特性
  • Vulkan实战之Window surface

    文章目录 创建window surface查询演示支持创建surface队列最终代码 由于Vulkan是一个平台无关的API xff0c 因此它不能自己直接与窗口系统接口交互 为了在Vulkan和窗口系统之间建立连接并将结果显示到屏幕上 x