Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)

2023-05-16

在这里插入图片描述
常用的两款AI可视化交互应用比较:

  • Gradio

    Gradio的优势在于易用性,代码结构相比Streamlit简单,只需简单定义输入和输出接口即可快速构建简单的交互页面,更轻松部署模型。适合场景相对简单,想要快速部署应用的开发者。

  • Streamlit

    Streamlit的优势在于可扩展性,相比Gradio复杂,完全熟练使用需要一定时间。可以使用Python编写完整的包含前后端的交互式应用。适合场景相对复杂,想要构建丰富多样交互页面的开发者。

Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)

相关文章:Gradio入门到进阶全网最详细教程[一]:快速搭建AI算法可视化部署演示(侧重项目搭建和案例分享)

在教程一中主要侧重讲解gradio的基础模块搭建以及demo展示,本篇文章则会侧重实际任务的搭建。

1.经典案例简单的RGB转灰度

保持一贯作风简单展示一下如何使用

import gradio as gr
import cv2


def to_black(image):
    output = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    return output

interface = gr.Interface(fn=to_black, inputs="image", outputs="image")

interface.launch()

gradio的核心是它的gr.Interface函数,用来构建可视化界面。

  • fn:放你用来处理的函数
  • inputs:写你的输入类型,这里输入的是图像,所以是"image"
  • outputs:写你的输出类型,这里输出的是图像,所以是"image"

最后我们用interface.lauch()把页面一发布,一个本地静态交互页面就完成了!在浏览器输入http://127.0.0.1:7860/,查收你的页面:

  • 上传一张图片,点击「SUBMIT」

对于任何图像处理类的ML代码来说,只要定义好一个图像输入>>模型推理>>返回图片的函数(逻辑和RGB转灰度图本质上没区别),放到fn中即可。

1.1 增加example

可以在页面下方添加供用户选择的测试样例。

在gr.Interface里的examples中放入图片路径,格式为[[路径1],[路径2],…]。

import gradio as gr
import cv2

def to_black(image):
    output = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    return output

interface = gr.Interface(fn=to_black, inputs="image", outputs="image",
                        examples=[["gradio/test.png"]])
interface.launch()

增加example不仅能让你的UI界面更美观,逻辑更完善,也有一些其他意义:比如做了一个图像去噪算法,但是用户手头并没有躁点照片,example能让他更快的体验到效果

  • 创建一个外部访问链接

    • 创建外部访问链接非常简单,只需要launch(share=True)即可,在打印信息中会看到你的外部访问链接。

    • 需要注意:免费用户的链接可以使用24小时,想要长期的话需要在gradio官方购买云服务。

2. 文本分类

在Gradio中搭建一个实用的自然语言处理应用最少只需要三行代码!让我们三行代码来搭建一个文本分类模型的演示系统,这里使用的模型是uer/roberta-base-finetuned-dianping-chinese,代码如下

#导入gradio
import gradio as gr
#导入transformers相关包
from transformers import *
#通过Interface加载pipeline并启动服务
gr.Interface.from_pipeline(pipeline("text-classification", model="uer/roberta-base-finetuned-dianping-chinese")).launch()

过程中需要加载一个400MB的模型。

直接运行即可,运行后,服务默认会启动在本地的7860端口,打开链接即可。

可以在左侧输入待分类文本,而后点击submit按钮,右侧便会展示出预测的标签及概率,如下图所示

3. 阅读理解

#导入gradio
import gradio as gr
#导入transformers相关包
from transformers import *
#通过Interface加载pipeline并启动服务
gr.Interface.from_pipeline(pipeline("question-answering", model="uer/roberta-base-finetuned-dianping-chinese")).launch()

再次打开,可以看到界面中除了几个按钮外的内容全部进行了更新,变成了阅读理解相关的内容,输入部分包括了context和question两部分,输出也变成了answer和score两部分。

效果上不佳可以考虑重新加载以及微调模型

3.1完善页面

尽管我们快速的启动了一个demo,但是页面整体还是较为简陋的,除了标题和实际的调用部分,缺少一些其他内容,我们可以通过配置几个简单的参数,将页面进行完善,还是以阅读理解任务为例,代码如下:

import gradio as gr
from transformers import *

#标题
title = "抽取式问答"
#标题下的描述,支持md格式
description = "输入上下文与问题后,点击submit按钮,可从上下文中抽取出答案,赶快试试吧!"
#输入样例
examples = [
    ["普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。", "著名诗歌《假如生活欺骗了你》的作者是"],
    ["普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。", "普希金创作的叙事诗叫什么"]
    ]
#页面最后的信息,可以选择引用文章,支持md格式
article = "感兴趣的小伙伴可以阅读[gradio专栏](https://blog.csdn.net/sinat_39620217/category_12298724.html?spm=1001.2014.3001.5482)"

gr.Interface.from_pipeline(
    pipeline("question-answering", model="uer/roberta-base-chinese-extractive-qa"),
    title=title, description=description, examples=examples, article=article).launch()
  • 运行上述代码,将看到如下页面,这里的example是可以点击的,点击后将自动填充至context和question中
  • 由于description和article字段支持md语法,因此我们可以根据需求,自行的去丰富完善各部分内容

4.Interface使用详解

前面的内容中构建演示系统都是基于pipeline的,各个部分的模块都是定义好的,快速启动的同时,在灵活性上有所欠缺。

简单的说,就需要两步:

  • 第一步,定义执行函数;
  • 第二步,绑定执行函数并指定输入输出组件。

假设还是阅读理解任务,但是我们这次不适用基于pipeline的加载方式,而是自定义实现,要求输入包含context、question,输出包含answer和score,但是这里的answer要求要把问题拼接上,如前面的示例,answer为普希金,这里的答案要变为:著名诗歌《假如生活欺骗了你》的作者是:普希金 ,针对这一需求,我们看下要如何实现。

  • 首先,定义执行函数。该函数输入包括context和question两部分,输出包括answer和score,本质上还是调用pipeline进行推理,但是在答案生成时我们做了额外的拼接处理。
qa = pipeline("question-answering", model="uer/roberta-base-chinese-extractive-qa")
def custom_predict(context, question):
    answer_result = qa(context=context, question=question)
    answer = question + ": " + answer_result["answer"]
    score = answer_result["score"]
    return answer, score
  • 接下来,在Interface中绑定执行函数并指定输入输出组件,fn字段绑定执行函数;inputs字段指定输入组件,这里是context和question两个文本输入,因此inputs字段的值为[“text”, “text”]数组(这里的text表示输入组件为TextBox,text只是一种便捷的指定方式);outputs字段指定输出组件,answer是文本输出,score可以用标签输出,这里采取了和inputs字段不一样的创建方式,我们直接创建了对应的组件,这种方式的使用优势在于可以对组件进行更精细的配置,例如这里我们便分别指定了两个输出模块的label 。
gr.Interface(fn=custom_predict, inputs=["text", "text"], outputs=[gr.Textbox(label="answer"), gr.Label(label="score")], 
             title=title, description=description, examples=examples, article=article).launch()

注意点:

  1. 输入输出要与函数的输入输出个数一致
  2. outputs字段,推荐使用创建的方式,否则页面显示的标签都是output*,不够清晰

完整代码:

import gradio as gr
from transformers import *

#标题
title = "抽取式问答"
#题下的描述,支持md格式
description = "输入上下文与问题后,点击submit按钮,可从上下文中抽取出答案,赶快试试吧!"
#输入样例
examples = [
    ["普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。", "著名诗歌《假如生活欺骗了你》的作者是"],
    ["普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。", "普希金创作的叙事诗叫什么"]
    ]
#页面最后的信息,可以选择引用文章,支持md格式

article = "感兴趣的小伙伴可以阅读[gradio专栏](https://blog.csdn.net/sinat_39620217/category_12298724.html?spm=1001.2014.3001.5482)"

qa = pipeline("question-answering", model="uer/roberta-base-chinese-extractive-qa")

def custom_predict(context, question):
    answer_result = qa(context=context, question=question)
    answer = question + ": " + answer_result["answer"]
    score = answer_result["score"]
    return answer, score

gr.Interface(fn=custom_predict, inputs=["text", "text"], outputs=[gr.Textbox(label="answer"), gr.Label(label="score")], 
             title=title, description=description, examples=examples, article=article).launch()

可以看到,其他的部分与我们使用pipeline创建的方式都一致,只是在answer部分有了变化。通过这种方式,我们可以创建出更加复杂的包含任意输入、输出的系统。

5.Blocks使用详解

事实上,Interface是一个更加高级的组件,虽然它已经支持了了一定的自定义内容,但是灵活性还是略差一些,如果有注意的话,可以回到上文看下,所有的组件都是被划分为了左右两部分,左侧输入,右侧输出。使用Interface就要接受这样的默认设定,那么假设你现在就想做成上下结构,上面输入,下面输出,那么,我们就需要用到Block。

Blocks是比Interface更加底层一些的模块,支持一些简单的自定义排版,那么下面就让我们来重构一下上面组件排列。整体是上下结构,从上到下,依次是context输入、question输入,clear按钮和submit按钮(在一横排),answer输出,score输出,其余如title、examples等内容不变,代码如下

import gradio as gr
from transformers import *

title = "抽取式问答"

description = "输入上下文与问题后,点击submit按钮,可从上下文中抽取出答案,赶快试试吧!"

examples = [
    ["普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。", "著名诗歌《假如生活欺骗了你》的作者是"],
    ["普希金从那里学习人民的语言,吸取了许多有益的养料,这一切对普希金后来的创作产生了很大的影响。这两年里,普希金创作了不少优秀的作品,如《囚徒》、《致大海》、《致凯恩》和《假如生活欺骗了你》等几十首抒情诗,叙事诗《努林伯爵》,历史剧《鲍里斯·戈都诺夫》,以及《叶甫盖尼·奥涅金》前六章。", "普希金创作的叙事诗叫什么"]
    ]

article = "感兴趣的小伙伴可以阅读[Transformers实用指南](https://zhuanlan.zhihu.com/p/548336726)"


#预测函数
qa = pipeline("question-answering", model="uer/roberta-base-chinese-extractive-qa")
def custom_predict(context, question):
    answer_result = qa(context=context, question=question)
    answer = question + ": " + answer_result["answer"]
    score = answer_result["score"]
    return answer, score

#清除输入输出
def clear_input():
    return "", "", "", ""

#构建Blocks上下文
with gr.Blocks() as demo:
    gr.Markdown("# 抽取式问答")
    gr.Markdown("输入上下文与问题后,点击submit按钮,可从上下文中抽取出答案,赶快试试吧!")
    with gr.Column():    # 列排列
        context = gr.Textbox(label="context")
        question = gr.Textbox(label="question")
    with gr.Row():       # 行排列
        clear = gr.Button("clear")
        submit = gr.Button("submit")
    with gr.Column():    # 列排列
        answer = gr.Textbox(label="answer")
        score = gr.Label(label="score")
    #绑定submit点击函数
    submit.click(fn=custom_predict, inputs=[context, question], outputs=[answer, score])
    # 绑定clear点击函数
    clear.click(fn=clear_input, inputs=[], outputs=[context, question, answer, score])
    gr.Examples(examples, inputs=[context, question])
    gr.Markdown("感兴趣的小伙伴可以阅读[Transformers实用指南](https://zhuanlan.zhihu.com/p/548336726)")

demo.launch()

当我们的服务启动起来后,还是在本地的,虽然访问是能访问了,但是还是会受到网络的限制。Gradio提供了一种非常方便的方式,可以使得本地的服务在任何地方都可以调用。代码上,我们只需要在launch方法调用时,指定share参数值为True。服务除了有一个本地地址,还有一个公网的地址https://11886.gradio.app,虽然时间只有72小时

demo.launch(inbrowser=True, inline=False, validate=False, share=True)
  • inbrowser - 模型是否应在新的浏览器窗口中启动。
  • inline - 模型是否应该嵌入在交互式python环境中(如jupyter notebooks或colab notebooks)。
  • validate - gradio是否应该在启动之前尝试验证接口模型兼容性。
  • share - 是否应创建共享模型的公共链接。用于处理。

参考链接:

Gradio官方仓库

基于Gradio可视化部署机器学习应用

gradio官方文档

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践) 的相关文章

  • 植保无人机PID调参经验

    1 P I D输出要限幅 2 P D是相对的 xff0c 如果系统震荡 xff0c 降低P或者加大D xff0c 在不震荡的条件下 xff0c 尽量让P大 3 I是可以不用的 xff0c 基本上PD控制器就可以控地很稳了 xff0c 如果感
  • 测试环境建设原则和管理实践

    1 问题 测试环境是指为了完成软件测试工作所必需的计算机硬件 软件 网络设备 历史数据等的总称 即够支持完成测试工作所需要的软件和硬件 测试环境是测试活动的基础 正确模拟生产环境 稳定支持测试活动是测试环境的基本要求 稳定可控的测试环境能够
  • ESP8266 WIFI数传 Pixhaw折腾笔记

    最近3DR数传老是断线 xff0c 重连 xff0c 数据刷不出来 xff0c 折腾了几天数传问题 xff0c 总结如下 xff1a 3DR RADIO xff1a 淘宝100多一对的 xff0c 别的无线数传也可以 xff0c 但一定保证
  • PX4的CMake解析

    home yanlei src Firmware cmake common 中定义了其他CMakeLists txt中所使用的一些函数 使用最多的函数px4 add module在px4 base cmake中 ekf2的CMakeList
  • PX4的软件仿真(SITL)环境配置过程

    官方地址 xff1a https dev px4 io en simulation gazebo html 框架图 xff0c 各个UDP端口一目了然 xff0c 仅有连接到模拟器的udp端口是随机的 xff0c 从下图的启动界面可以看出
  • PX4的硬件仿真(HITL)环境配置过程

    官方链接 xff1a https dev px4 io en simulation hitl html 硬件在环仿真 HITL 结构图 A HITL configuration is selected via QGroundControl
  • ubuntu 分区安装

    分配大小 60G 选择安装Ubuntu 安装选项 安装类型 xff1a 选择其他选项 新建分区表 1 swap区 xff1a 设为逻辑分区 xff1b 作用跟电脑内存类似 xff0c 大小也可以和电脑内存一样大 xff1b 一般2G就可以2
  • 飞控

    现在市面上的飞行控制器 xff08 下面简称飞控 xff09 分为两种 一种是由商业公司设计生产的 xff0c 例如DJI的Naze系列飞控 xff0c 一般都是闭源的 xff0c 并且经过正规系统的测试 xff0c 稳定性方面有保障 另外
  • Ubuntu16.04下编译Pangolin时失败的解决方法

    从github上下载了最新版本的Pangolin xff0c 依赖项都安齐了 xff0c 但是编译时提示找不到libopencv core so 2 4和libopencv imgproc so 2 4 xff0c 然后处理libavfil
  • Windows10+Ubuntu16.04LTS双系统,卸载Ubuntu16.04LTS并安装Ubuntu18.04LTS

    1 背景 xff1a 本来是Windows10 43 Ubuntu16 04双系统 xff0c 想直接从Ubuntu16 04升级到18 04 xff0c 点的软件更新器里的更新 xff0c 结果重启之后一直黑屏 xff0c 左上角有光标闪
  • 深度学习环境配置(Ubuntu18.04+PyTorch1.9.0)

    准备一台有GPU的电脑 一个Ubuntu18 04 xff0c 把软件源换成清华源 xff0c 安装gcc xff08 这个若版本不对可以后续再调整 xff09 安装Anaconda xff1a 选取版本3 5 2 0 xff0c 这个版本
  • 拯救者Y9000P2022版安装Ubuntu

    前言 当我们买了一个新电脑 新笔记本时 xff0c 如果型号比较新 xff08 通常为了追求性能 xff0c 我们总会选择新型号 xff09 xff0c 大概率Ubuntu会没有相应的硬件驱动支持 xff0c 通常是显卡和网卡不支持 配置
  • 一页PPT自动生成短视频的研究

    希望通过一些技术 xff0c 将以前自己讲过的PPT转换成有解说的短视频 xff0c 从而进行一些分发 旁白到语音 从文字转换成语音我们首先想到的就是TTS xff0c 这其中我也是用了各式各样的TTS xff0c 发现发音电子音非常强 x
  • 选择Mathtype数学公式编辑器的N个理由

    Mathtype是一款强大的数学公式编辑器 xff0c 是理科 生必备的工具 为什么选择这款软件呢 xff1f 不仅仅是因为它有很强的实用性 xff0c 而且他还有许多公式编辑器无可替代的强大功能 今天就来和大家一起细数细数为什么选 择ma
  • Python中局部变量、全局变量和修改全局变量

    局部变量 1 什么是局部变量 如下图所示 2 小总结 局部变量 xff0c 就是在函数内部定义的变量不同的函数 xff0c 可以定义相同的名字的局部变量 xff0c 但是各用个的不会产生影响局部变量的作用 xff0c 为了临时保存数据需要在
  • 用Python抓包工具查看周边拼车情况

    说起Python爬虫 xff0c 很多人第一个反应可能会是Scrapy或者Pyspider xff0c 但是今天文章里用到是Python下一个叫Mitmproxy的抓包工具 xff0c 对付一些非常规的数据获取还是很有效的 不过凡事都是有利
  • 在Python中定义Main函数

    许多编程语言都有一个特殊的函数 xff0c 当操作系统开始运行程序时会自动执行该函数 这个函数通常被命名为main xff0c 并且依据语言标准具有特定的返回类型和参数 另一方面 xff0c Python解释器从文件顶部开始执行脚本 xff
  • realsense D435i安装及标定遇到的问题

    realsense D435i安装 这里的安装是基于ros的安装 xff0c 前提是要安装ros系统 下载realsense ros包 span class token function mkdir span p catkin ws src
  • 【ROS】使用C++编写简单moveit终态位姿控制以及position数据可视化

    1 前言 这几天主要还是在研究用C 43 43 编写moveit target pose的例程 xff0c 中途出现了各种问题 xff0c 一度怀疑人生 xff0c 好在现在也算是磕磕碰碰的解决了一点 虽然还是不知道why xff0c 不过
  • ERROR Session/line number was not unique in database. History logging moved to new session 18

    ERROR Session span class token operator span line number was span class token keyword not span unique span class token k

随机推荐