毕业设计 基于stm32与openmv的目标跟踪系统

2023-05-16

文章目录

  • 0 前言
  • 课题简介
  • 设计框架
  • 3 硬件设计
  • 4 软件设计
  • * 对被测物体的识别
    
    • 判断被测物体所在区域
  • 5 最后

0 前言

🔥
这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于stm32与openmv的目标跟踪系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

在这里插入图片描述

课题简介

随着智能化技术的迅猛发展,网络智能视频监控系统也得到了广泛的应用。视频监控系统经历了从模拟化向数字化、网络化、智能化的发展过程,目标检测和跟踪技术是计算机视觉的重要组成部分,也是实现监控系统智能化的基础,因其广泛的应用前景而成为近年来的研究热点。本文通过OpenMV作为是识别模块去识别被测物体(以红色小球为例),当其识别到红色小球后,判断小球中心点所在的区域信息,并将其区域标志位通过串口发送给STM32,当STM32接收到位置信息后对x轴、y轴的两个舵机参数进行操作,最后通过定时器输出合适的PWM波,控制舵机旋转相应的角度,使OpenMV摄像头对准被测物体,以实现物体追踪功能。

设计框架

主要分为两个方面:一个是OpenMV识别部分,另一个是STM32控制部分。通过OpenMV对被测物体进行捕捉,所用的被测物体为红色小球,OpenMV编程时,先对红色的色域进行调整,在识别到红色后,对红色进行判断,判断出识别区域中红色区域最大的部分,此举在过滤掉背景中存在小部分红色区域,造成对识别的干扰,识别到红色小球后,用矩形框将其框住,并显示矩形框的中心位置,判断中心位置所在区域,并将区域的标志信息会通过串口传递给STM32,STM32接收到数据后进行相应动作,使定时器输出PWM波,控制舵机旋转相应的角度,使OpenMV摄像头对准被测物体,以实现物体追踪功能。主要研究内容如下:

  • 1.通过OpenMV识别出被测物体(以红色小球为例)。
  • 2.在OpenMV识别出目标物体后,判断物体所在区域,将区域信息通过串口传输给STM32。
  • 3.利用STM32的串口部分的应用及原理知识,对接收到的数据进行处理。
  • 4.利用STM32的应用及原理知识,对处理好的数据进行判断后,对舵机进行控制。
  • 5.利用STM32的定时器部分和PWM控制的应用及原理知识,控制舵机,使其转动适当角度,使OpenMV对准目标物体。主控制图如图所示。

在这里插入图片描述
舵机控制逻辑

在这里插入图片描述

3 硬件设计

硬件连接部分使用杜邦线连接,连接如下:3S锂电池接稳压板输入端以及直接给LED补光板供电,稳压板输出端接OpenMV的VIN和GND引脚、STM32的5V和GND引脚以及两个舵机的正(红色)负(棕色)极。OpenMV的P4引脚(串口3的TX)接STM32的PA10引脚(串口1的RX),OpenMV的P5引脚(串口3的RX)接STM32的PA9引脚(串口1的TX),STM32的PC7引脚(定时器3通道2)接x轴的舵机的信号线(橙黄色),STM32的PC7引脚(定时器3通道1)接y轴的舵机的信号线(橙黄色)。

在这里插入图片描述
在这里插入图片描述

4 软件设计

软件部分的功能主要分为两部分,一个是OpenMV部分,另一是STM32部分,OpenMV主要实现功能:完成被测物体的识别、寻找最大色块区域、判断被测物体所在区域、通过串口发送被测物体的位置信息。STM32部分主要实现功能:使用串口接收OpenMV发来的数据、通过定时器输出PWM波、以及实现控制舵机旋转追踪的目的。

整体逻辑

在这里插入图片描述

对被测物体的识别

本设计中被测物体为一个红色小球,因此对于物体的识别主要为颜色识别,在编程中首先需要对OpenMV的红色的阈值进行调整,意在告诉OpenMV“什么是红色”,打开阈值编辑器,对LAB的阈值进行调整,使二进制图像中只有红色区域的映像
在这里插入图片描述


import sensor, image, time, pyb
ensor.reset() # 初始化摄像头传感器.
sensor.set_pixformat(sensor.RGB565) # 使用RGB565.
sensor.set_framesize(sensor.QVGA) # 分辨率:320*240
sensor.skip_frames(10) # 让新设置生效.
sensor.set_auto_whitebal(False) # 关闭自动白平衡.
clock = time.clock() # Tracks FPS.
red_threshold = (14, 68, 11, 70, 9, 56) #红色阈值设定
while(True):
img = sensor.snapshot() # 拍照并返回图像.
blobs = img.find_blobs([red_threshold])
img.draw_rectangle(blobs)
img.draw_cross(blobs.cx(), blobs.cy())

判断被测物体所在区域

在这里插入图片描述
在这里插入图片描述


import sensor, image, time, pyb
from pyb import UART

red_threshold = (14, 68, 11, 70, 9, 56) #红色阈值设定

sensor.reset() # 初始化摄像头传感器.
sensor.set_pixformat(sensor.RGB565) # 使用RGB565.
sensor.set_framesize(sensor.QVGA) # 使用QVGA.
sensor.skip_frames(10) # 让新设置生效.
sensor.set_auto_whitebal(False) # 关闭自动白平衡.
clock = time.clock() # Tracks FPS.

uart = UART(3, 115200)
def find_max(blobs):
    max_size=0
    for blob in blobs:
        if blob.pixels() > max_size:
            max_blob=blob
            max_size = blob.pixels()
    return max_blob

led = pyb.LED(1)
while(True):
    img = sensor.snapshot() # 拍照并返回图像.
    blobs = img.find_blobs([red_threshold])
    x_max = 320
    x_min = 0
    x_1 = 115
    x_2 = 185

    y_max = 240
    y_min = 0
    y_1 = 95
    y_2 = 145

    if blobs:
        max_blob=find_max(blobs)
        print('sum :', len(blobs))
        img.draw_rectangle(max_blob.rect())
        img.draw_cross(max_blob.cx(), max_blob.cy())
        if max_blob.cx()>= x_min  and max_blob.cx() <= x_1 and\
max_blob.cy() >= y_2 and max_blob.cy() <= y_max :
            flag = 1
        if max_blob.cx()>= x_2 and max_blob.cx() <= x_max and\
 max_blob.cy() >= y_2 and max_blob.cy() <= y_max :
            flag = 2
        if max_blob.cx()>= x_min and max_blob.cx() <= x_1 and\
 max_blob.cy() >= y_min and max_blob.cy() <= y_1 :
            flag = 3
        if max_blob.cx()>= x_2 and max_blob.cx() <= x_max and \
max_blob.cy() >= y_min and max_blob.cy() <= y_1 :
            flag = 4
        if max_blob.cx()> x_1 and max_blob.cx() < x_2 and\
 max_blob.cy() > y_1 and max_blob.cy() < y_2 :
            flag = 5
        output_str="%d" %flag 
        led.on()
        print('you send:',output_str)
        uart.write(output_str+'\r\n')
    else:
        print('not found!')
        led.off()
STM32程序:

main.c:
#include "STM32f10x.h"
#include "control.h"
#include "Systick.h"
#include "usart.h"		
#include "pwm.h"

int main()
{
	Systick_init(72);
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);  //中断优先级分组 
	USART1_Init(115200);	
	TIM3_CH2_PWM_Init(20000-1,72-1); //20ms
	TIM3_CH1_PWM_Init(20000-1,72-1);
	//舵机角度参数:19500-17500(前者为0°,后者为180°)
	TIM_SetCompare2(TIM3,19500);//x轴角度初始化,下面的舵机。
	TIM_SetCompare1(TIM3,18700);//y轴角度初始化,上面的舵机。
	Delay(2500);
	while(1);
}

pwm.c:
#include "pwm.h"

void TIM3_CH2_PWM_Init(u16 per,u16 psc)//控制x轴舵机(引脚:PC7)
{
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
	TIM_OCInitTypeDef TIM_OCInitStructure;
	GPIO_InitTypeDef GPIO_InitStructure;
	/* 开启时钟 */
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE);
/* GPIO配置 */
	GPIO_InitStructure.GPIO_Pin=GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;//复用推挽输出
	GPIO_Init(GPIOC,&GPIO_InitStructure);	
/* GPIO重映射 */
	GPIO_PinRemapConfig(GPIO_FullRemap_TIM3,ENABLE);//改变指定管脚的映射	
	TIM_TimeBaseInitStructure.TIM_Period=per;   //自动装载值
	TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数
	TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1;
	TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up;  
	TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure);	
/* PWM参数配置 */
	TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;
	TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_Low;
	TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;
	TIM_OC2Init(TIM3,&TIM_OCInitStructure); //输出比较通道2初始化
	TIM_OC2PreloadConfig(TIM3,TIM_OCPreload_Enable); 
	TIM_ARRPreloadConfig(TIM3,ENABLE);//使能预装载寄存器	
	TIM_Cmd(TIM3,ENABLE); //使能定时器
}

在这里插入图片描述
在这里插入图片描述

最后

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

毕业设计 基于stm32与openmv的目标跟踪系统 的相关文章

  • 关于NAND FLASH调试的一点总结

    https www freesion com article 5033494883 很久没接触过 nandflash 驱动 xff0c 最近工作又摸了 xff0c 于是顺便整理总结一下 nandflash 在我看来算是比较落后的存储设备 x
  • 一起自学SLAM算法:1.6 ROS其他重要概念

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 1 1 ROS简介 1 2 ROS开发环境搭建 1 3 ROS系统架构 1 4 ROS调试工具 1 5 ROS节点通信 1 6 ROS其
  • 一起自学SLAM算法:1.7 ROS2.0展望

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 1 1 ROS简介 1 2 ROS开发环境搭建 1 3 ROS系统架构 1 4 ROS调试工具 1 5 ROS节点通信 1 6 ROS其
  • 一起自学SLAM算法:第2章-C++编程范式

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 2 1 C 43 43 工程组织结构 2 2 C 43 43 代码编译方法 2 3 C 43 43 编
  • 一起自学SLAM算法:第3章-OpenCV图像处理

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 3 1 认识图像数据 3 2 图像滤波 3 3 图像变换 3 4 图像特
  • 一起自学SLAM算法:第5章-机器人主机

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 5 1 X86与ARM主机对比
  • 一起自学SLAM算法:第6章-机器人底盘

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 6 1 底
  • 一起自学SLAM算法:第7章-SLAM中的数学基础

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:第8章-激光SLAM系统

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:8.1 Gmapping算法

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:8.2 Cartographer算法

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • Git - - subtree与submodule

    https www cnblogs com anliven p 13681894 html 目录 1 仓库共用 子仓库 子项目 2 submodule 与 subtree 对比 2 1 git submodule2 2 git subtre
  • 一起自学SLAM算法:第9章-视觉SLAM系统

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:第10章-其他SLAM系统

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:第11章-自主导航中的数学基础

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:11.5 强化学习与自主导航

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:第12章-典型自主导航系统

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:第13章-机器人SLAM导航综合实战

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 一起自学SLAM算法:13.4 基于自主导航的应用

    连载文章 xff0c 长期更新 xff0c 欢迎关注 xff1a 写在前面 第1章 ROS入门必备知识 第2章 C 43 43 编程范式 第3章 OpenCV图像处理 第4章 机器人传感器 第5章 机器人主机 第6章 机器人底盘 第7章 S
  • 在ubuntu18.04中安装opencv_contrib-3.2.0闭坑记录

    由于最近要在OpenCV3中使用SIFT和SURF特征提取 xff0c 而自从OpenCV2升级到OpenCV3版本后 xff0c SIFT SURF等这些算法都被移出opencv默认项目库 xff0c 而被放到叫opencv contri

随机推荐

  • 在ROS中使用超声波(sonar)导航避障

    1 下载sonar layer的代码 https github com DLu navigation layers 实际只需要其中的range sensor layer放到工作空间catkin make 实验时放置于src中 xff0c 可
  • rtabmap更加适合视觉SLAM建图和导航

    slam问题目前主要集中在如何建立一个好的地图 xff0c 至于后续如何使用地图这部分工作研究的不多 xff0c 不过我个人恰好在做这部分工作所以答一下个人见解 首先 xff0c 有一张好的地图 xff0c 是导航或地图语义分析等应用的前提
  • Git应用详解第十讲:Git子库:submodule与subtree

    https www cnblogs com AhuntSun blog p 12736934 html 前言 前情提要 xff1a Git应用详解第九讲 xff1a Git cherry pick与Git rebase 一个中大型项目往往会
  • 单片机串口通信程序

    本文总结了两种比较简单的关于串口发送接收的程序 xff0c 以下是步骤 xff1a 定义数据 xff1a unsigned char idata URX 10 61 0 串口接收数组 unsigned char idata URX Num
  • Linux当中的压栈和出栈指令以及跳转指令详细教程

    1 跳压栈出栈指令 xff1a 我们通常会在 A 函数中调用 B 函数 xff0c 当 B 函数执行完以后再回到 A 函数继续执行 要想 再跳回 A 函数以后代码能够接着正常运行 xff0c 那就必须在跳到 B 函数之前将当前处理器状态保存
  • MySQL5.7版本在Ubuntu(WSL环境)系统安装

    课程中配置的WSL环境是最新的Ubuntu22 04版本 xff0c 这个版本的软件商店内置的MySQL是8 0版本 所以我们需要额外的步骤才可以安装5 7版本的MySQL 安装操作需root权限 xff0c 你可以 xff1a 通过 su
  • 动态库静态库的区别

    1 制作过程 静态库 xff1a 生成 o文件后 ar rcs o libxxx a 动态库 xff1a 生成 o文件时 xff0c 静态库是 c选项 xff0c 而动态库是 fpic FPIC xff0c 因为动态库需要生成与位置无关的代
  • 怎么把PWM信号转为模拟量

    有一个测量位置变化的位置传感器 xff0c 用万用表电压档测量传感器的输出信号 xff0c 结果显示的是模拟量信号 xff0c 即位置和信号输出大小呈线性关系 但是 xff0c 用示波器 xff08 Picoscope 4227 xff09
  • STM32环形串口队列程序 大数据串口收发 实时不丢包 串口程序平常产品开发中编写或移植的程序并亲自测试通过,均为工程文件格式,可直接编译使用

    STM32环形串口队列程序 大数据串口收发 实时不丢包 串口程序平常产品开发中编写或移植的程序并亲自测试通过 xff0c 均为工程文件格式 xff0c 可直接编译使用 该程序为大数据量吞吐的串口收发例程 xff0c 中断接收 xff0c 边
  • C语言中的函数返回值、return用法、return 0详解

    1 函数返回值 定义 xff1a 函数的返回值是指函数被调用之后 xff0c 执行函数体中的代码所得到的结果 xff0c 这个结果通过return语句返回 没有返回值的函数为空类型 xff0c 用void表示 一旦函数的返回值类型被定义为
  • TCP协议

    TCP xff08 Transmission Control Protocol xff09 是面向连接的可靠的通讯协议 TCP需要经过三次握手建立连接 xff0c 并在断开时通过四次挥手释放连接 TCP通过应答确认 超时重传 xff08 R
  • UART&RS232&RS485的区别

    UART RS232 RS485在串口通信中 xff0c 主要区别是电平的不同 xff0c 其中UART通常使用TTL电平 TTL TTL全名是晶体管 晶体管逻辑集成电路 Transistor Transistor Logic 输入高电平最
  • 思岚雷达rplidar S1配置调试全纪录

    耗时10天 xff0c 终于从零开始用QT在Ubuntu系统下完成了一个雷达避障系统的设计 xff0c 这文章的主要目的是将配置的流程和遇到的问题记录下来 xff0c 以供自己以后遇到一样的问题时可以有个参考 一 思岚雷达的配置 1 配置的
  • 学习 C++ 到底有什么好处?

    学C 43 43 本身是教不会你编程的 你需要主动的 不断的扩展自己的知识领域 写一个学生管理系统是一个很好的开端 xff1b 但接下来 xff0c 你还需要学习更多 举例来说 xff0c 图形界面 究竟是怎么一回事呢 xff1f 我们知道
  • c++中的二分查找算法

    二分查找普通模式 模板公式 xff1a while l lt 61 r mid 61 l 43 r 2 l 61 mid 43 1 else r 61 mid 1 二分查找特殊情况1 xff1a 000011111求第一个1 while l
  • liunx使用math.h头文件报错解决办法

    在liunx操作系统中 xff0c 编译的时候用到了math h或cmath头文件时 xff0c 一定要主动连接静态库 比如在vim中 xff0c 给编译的文件名后加 lm 否则会报错误
  • 基于AlexNet卷积神经网络的手写体数字倾斜校正系统研究-附Matlab代码

    目 录 一 引言 二 AlexNet 网络 三 实验验证 3 1 实验数据集 3 2 数据训练 3 3 手写体倾斜数字校正结果 四 参考文献 五 Matlab代码获取 一 引言 手写体数字识别是光学字符识别 Optical Characte
  • Jetson Nano 4GB 要怎么供电? Jetson Nano 2GB呢?

    Jetson Nano 4GB 常使用的电源连接方式有两种 xff1a 1 DC Power Jack 5 5 2 1mm 5V 4A xff0c 需使用跳帽将脚位 J48 短路 图一红框处 xff0c 电源连接方式请参照图一蓝框处 若一切
  • 毕业设计 基于单片机的导盲拐杖设计(源码+硬件+论文)

    文章目录 0 前言1 主要功能2 硬件设计 原理图 3 核心软件设计4 实现效果5 最后 0 前言 x1f525 这两年开始毕业设计和毕业答辩的要求和难度不断提升 xff0c 传统的毕设题目缺少创新和亮点 xff0c 往往达不到毕业答辩的要
  • 毕业设计 基于stm32与openmv的目标跟踪系统

    文章目录 0 前言课题简介设计框架3 硬件设计4 软件设计 对被测物体的识别 判断被测物体所在区域 5 最后 0 前言 x1f525 这两年开始毕业设计和毕业答辩的要求和难度不断提升 xff0c 传统的毕设题目缺少创新和亮点 xff0c 往