0.9 - GPIO寄存器的C语言映射与STM32库函数雏形构建思路

2023-05-16

首先,从参考手册可知,程序存储器(flash)、数据存储器(SRAM)、寄存器(外设控制)和输入输出端口被组织在同一个4GB的线性地址空间内。 数据字节以小端格式存放在存储器中。一个字里的最低地址字节被认为是该字的最低有效字节,而最高地址字节是最高有效字节。可访问的存储器空间被分成8个主要块,每个块为512MB。

         说白了,寄存器就是一个有着控制外设能力的存储器单元,我们要使用片上外设的功能,就需要按照规定(参考手册),向这些寄存器中写入对应的二进制数值。

        而我们向这些寄存器写入数据,就需要知道它的地址,参考手中也给出了这些寄存器的地址,但是每次写都要查手册就显得太麻烦了,效率低并且容易出错,除了错也不好查。

        而如果用别名来指代这些地址,就会降低编程的难度,并且可以提高程序的可读性。C语言用#define 就可以做到。而STM32的库函数其实也是这么做的:

 从STM32的存储器和总线架构可知,外设寄存器都挂在AHB,APB1,APB2这三条总线上,并且在32中的寄存器都是32位的,也就是4个字节,相当于一个Int。而存储器的地址是呈线性的,通过地址偏移的方法,可将每个寄存器的地址都指代为一个名字。

还有一点也很重要,就是同一个外设的寄存器是连续的,这样我们就可以通过定义一个结构体,这个结构体包含了一块连续的内存空间,这个连续内存空间的长度正好和对应外设寄存器的长度相等,这样一来,只要将结构体首地址设置为寄存器的首地址,那么我们对结构体的赋值,就相当于对外设寄存器的赋值。我们就可以提前将设置参数写入一个专用的赋值结构体中,然后用这个结构体的成员来初始化外设寄存器。并且这一步是可以用函数来完成的,只要再函数接口上预留出接口,我们将寄存器地址和结构体地址传入,即可完成对外设寄存器的配置。这就是STM32固件库函数的构建思路。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

0.9 - GPIO寄存器的C语言映射与STM32库函数雏形构建思路 的相关文章

  • 网络 UDP协议(C++|代码通过udp协议实现客户端与服务端之间的通信)

    这里写目录标题 udp通信编程各端的操作流程 xff1a 服务端操作流程 xff1a 客户端操作流程 xff1a 第2 3步与服务端不同 socket接口介绍udp客户服务端代码实现 推荐阅读 socket套接字编程就是在网络程序中编写代码
  • 网络 TCP协议(C++代码|通过tcp协议实现客户端与服务端之间的通信)

    目录 TCP通信编程各端的操作流程 xff1a 服务端操作流程 xff1a 客户端操作流程 xff1a 推荐先学习UDP协议在学习TCP协议 在UDP协议博客中讲解得更详细 xff0c 看懂UDP协议就很容易理解TCP了 网络 UDP协议
  • Matlab学习-箱型图绘制

    1 箱型图简介 xff1a 参考链接 xff1a boxplot函数用法详解 箱型图简介 箱型图主要包括的数据有 xff1a 最大值 最小值 上四分位数 下四分位数和中位数 xff0c 以及异常值 2 箱型图绘制 X span class
  • Matlab学习-CDF(累积分布函数图)绘制

    累积分布函数图绘制 参考链接 xff1a 1 Matlab官方说明 2 参考链接 3 属性设置 CDF xff1a 累积分布函数图 xff0c 顾名思义就是能够直观的反应某组数列分布的概率情况 xff0c 能够非常直观的反应误差精度大小 图
  • Matlab学习-频率分布直方图绘制

    参考链接 xff1a hist xff08 xff09 函数用法 频率分布直方图 xff1a 在数理统计中 xff0c 会经常使用到频率分布直方图 xff0c 能够直观的反应频率分布的范围大小 xff0c 在直角坐标系中 xff0c 横轴为
  • Matlab学习-经纬度在matlab内置地图显示

    已知经纬度坐标 xff0c 将其显示是地图上 参考链接 xff1a 使用matlab绘制世界地图并根据经纬度绘制点位 附m map的下载与安装说明 wm span class token operator 61 span webmap sp
  • ARM存储格式的“大小端”解析

    ARM储存 大端格式和小端格式 所谓的大端模式 xff0c 是指数据的高位 xff0c 保存在内存的低地址中 xff0c 而数据的低位 xff0c 保存在内存的高地址中 xff0c 这样的存储模式有点儿类似于把数据当作字符串顺序处理 xff
  • UBLOX板卡基础设置--F9P板卡配置(基准站和流动站)

    UBLOX F9P板卡配置 基准站 流动站 UBX F9P模块为双频定位芯片 xff0c 是市场上目前最常用的高精定位模块 xff0c 差分定位精度可达厘米级 xff0c 具体参数详见官方文档 官方文档下载链接 xff1a UBX F9P模
  • GIT学习-常用命令

    2 GIT学习 常用命令 在学习git前首先需要对相关名词和概念有基本了解 xff0c git基础知识学习可参考以下资料 xff1a git基础知识 xff1a GIT学习 1 基础知识git下载与配置 xff1a GIT学习 xff08
  • ROS常用命令

    ROS常用命令 1 将话题数据单独导出 将话题数据单独导出为一个文件 rostopic echo b name name p topic name gt save file name ex rostopic echo b test bag
  • Linux常用命令

    Linux常用命令 1 查看电脑IP地址 ifconfig 2 远程连接其他电脑 xff0c 查看是否连接成功 ping IP address 3 通过IP地址远程连接电脑 ssh lcl 64 IP address 4 文件传输 4 1
  • opencv-3.4.1-x86编译安装 -- 超详细

    相关链接 xff1a opencv 3 4 1 arm编译安装 超详细 opencv 3 4 1 x86编译安装 环境1 安装依赖库2 OpenCV源码获取与解压2 1 获取源码2 2 工作目录准备2 3 解压 3 OpenCV配置编译3
  • Qt编程之单例模式——代码复用,一个类供多个类调用

    什么是单例模式 单例模式是一种对象创建模式 xff0c 用于生产一个对象的实例 xff0c 它可以确保系统中一个类只产生一个实例 xff0c 这样做有两个好处 xff1a 1 对于频繁使用的对象 xff0c 可以省略创建对象所花费的时间 x
  • STM32串口数据接收处理,数据分割为整形浮点型数据。

    简介 通过stm32的串口接收数据 xff0c 通过strstr函数分割数据 xff0c 再将字符数据转化为整形数据或浮点数据 比如 xff1a stm32接收到数据 s555s xff0c 分割数据为 555 xff0c 然后转化为int
  • 抛出异常时将异常信息返给前端

    全局异常处理器负责将抛出的异常 xff0c 以统一的格式返给前端 在这里起主要作用的注解是 64 RestControllerAdvice 64 RestControllerAdvice主要配合 64 ExceptionHandler使用
  • 关于入栈和出栈的理解

    关于入栈和出栈的理解 xff1a 假设程序在运行 xff0c 这个时候就会涉及到下面要说到的几个核心的寄存器 xff08 对栈进行操作 xff09 就是PC寄存器 xff08 为了能够准确地记录各个线程正在执行的当前字节码指令地址 xff0
  • 原生 css 实现进度条

    方案一 xff1a 通过data控制它的样式 1 首先搭建dom结构 lt div class 61 34 home left top content div 34 v for 61 34 item index in PowerAAcces
  • 实现开发板、电脑(无线网卡)与虚拟机三者通过网络连接(三者都可以上外网)

    借鉴文章 xff1a https blog csdn net dongtaintailiang article details 106314689 spm 61 1001 2014 3001 5501 因为项目需要 xff0c 找到这篇文章
  • STM32串口发送接收数据

    目录 1 串口通信2 串口的结构体3 如何配置串口的发送4 通过串口向电脑发送ok字符5 封装发送字符串函数6 重定向printf串口发送7 串口输入控制LED灯开关遇到的问题 1 串口通信 我用的32是stm32f10x最小系统没有UAR
  • 数据结构代码

    1 线性表 1 顺序表 span class token keyword typedef span span class token keyword struct span span class token punctuation span

随机推荐