Boost电路硬件设计实例

2023-11-15

上一篇:Boost电路原理分析及其元件参数设计_Vane Zhang的博客-CSDN博客


        本文以单相光伏发电系统中前级Boost电路为例对其进行硬件设计,Boost电路的硬件电路主要包括能量转换电路、开关管驱动电路和信号检测电路的设计。

1 系统指标

表1 系统的设计参数

指标 参数

光伏额定功率P_{o}

1000W

光伏最大输入电压V_{Smax}

150V

光伏最小输入电压V_{Smin}

50V

母线电压(Boost电路输出电压)V_{o}

400V

电流纹波率\eta _{L}

25%

输出电压纹波率\eta _{o}

0.1%

开关频率f_{S}

20kHz

开关周期T_{S}

50μs

2 能量转换电路设计

2.1 能量转换电路原理图

图2 能量转换电路原理图

2.2 能量转换电路器件选型

(1)储能电感L的器件选型(图2中的L1)

        已知Boost电路的输入输出电压关系:

V_{o}=\frac{1}{(1-D)}\cdot V_{S}

        根据上式计算占空比可得:0.625<D<0.875,虽然D无法取到1/3,但是本着电感取值尽可能大的原则,此处依然按照D=1/3来计算:

{\color{Magenta} L>\frac{4\cdot V_{o}^{2}\cdot T_{S}}{27\cdot \eta _{L}\cdot P_{o}}}

 将系统指标中的参数代入上式可得:

L>4.74mH

 另外,结合实际情况,认为输入电压平均在100V左右,此时电感所要承受的最大电流为:

    I_{Lmax}=1000/100=10A

        综上所述,考虑到系统的的裕量,电感要适当取得大一些,本例中的电感参数取5mH,其饱和电流参数取为10A。

 图3 定制铁硅铝磁环电感实物图(5mH/10A)

 (2)输出滤波电容C的器件选型(图2中的C3~C6)

        已知输出滤波电容的选取依据:

 {\color{Magenta} C>\frac{P_{o}\cdot D\cdot T_{S}}{\eta_{C}\cdot V_{o}^{2}}}

 将系统指标中的参数代入上式可得:

C>273.44\mu F

        由于本例中Boost电路的输出滤波电容同时作为系统的母线电容,因此在设计时通常留5~10倍裕量(一般情况下2倍裕量即可)。本例中输出滤波电容取2000μF,且输出电容的耐压必须大于输出电压400V。在硬件设计时使用了8个1000μF/315V的电解电容,并采用两个串联为一组,然后四组并联,最终得到2000μF/600V的输出电容。

 图4 牛角型电解电容实物图(1000μH/315V)

  (3)开关管VQ的器件选型(图2中的Q1)

        在对开关管器件进行选型时应考虑器件所能承受的最大电压和最大电流,另外还需考虑最大开关频率等因素。从电路拓扑可以看出,开关管所承受的最大电压即为母线电压400V。考虑到电路中可能存在尖峰脉冲,需要保留一定的耐压裕量,因此耐压参数设计为600V。

        从耐流角度分析,输出的最大电流为:

I_{o}=P_{o}/V_{o}=2.5A

而开关管所要承受的最大电流为:

I_{o}/(1-D_{max})=20A

同样考虑一定的裕量,这里耐流参数设计为50A。

        综合考虑以上两点因素,开关管选择英飞凌公司的绝缘栅双极型晶体管IKW50N60T,该型号的IGBT具有600V的耐压和50A的耐流,并且最大开关频率可达20kHz。

图5 开关管IKW50N60T实物图(600V/50A)

(4)二极管VD的器件选型(图2中的D1)

        二极管VD所承受的最大电压也是母线电压400V,而所承受的最大电流同样认为是20A。Boost电路中的二极管选择威世公司的快恢复二极管VS-75EPU12L-N3,该型号的二极管具有1200V的耐压和75A的耐流,其反向恢复时间最快可达62ns。

图6 二极管VS-75EPU12L-N3实物图(1200V/75A)

补充:一个用MATLAB编写的小工具

图7 计算Boost电路储能器件参数的工具

下载链接:Boost_cal.rar_boost输出电压波形-嵌入式文档类资源-CSDN下载

3 开关管驱动电路设计

        Boost能量转换电路中的开关管采用IKW50N60T(IGBT管),由于处理器的IO口无法直接驱动IGBT的开关动作,因此必须设计相应的驱动电路。M57959L是为驱动IGBT而设计的厚膜集成电路,该模块采用高速光耦隔离输入,且与TTL电平兼容,可直接与处理器的IO口连接。

        驱动电路的控制信号由处理器产生,并从M57959L的13号脚输入,驱动芯片的8号脚能够输出故障信号,并通过光耦隔离芯片PC817将故障信号传递给处理器;IGBT的驱动信号由5号脚输出,连接IBGT的G极;其中R3是栅极的限流电阻,需要选取合适的阻值,取值太大影响开关频率,取值过小无法起到保护作用。二极管D2和D3是短路/过载检测二极管,而稳压管DZ1则用来补偿D2和D3的反向恢复时间;稳压管DZ2和DZ3用来对输出驱动信号的进行限幅处理,以保护IGBT的发射结。

图8 开关管驱动电路原理图

4 信号检测电路设计

        信号检测电路负责对能量转换电路的运行状态进行监测,并将采集到的信息反馈至处理器以实现对系统的实时控制。需要采集的信号包括输入直流电压信号(最大150V)、输出直流电压信号(最大400V)和输入直流电流信号(最大10A)。        

(1)输入电压检测电路(VSM025A匝数比n=2.5)

        输入电压信号的检测电路,如图9所示。电压传感器选择VSM025A的霍尔传感器,转换比例n=2.5。首先通过功率电阻R4将待测大电压信号转换为小电流信号,传感器将该电流信号按照1:2.5比例进行输出。进入调理电路后先经过电阻R5将电流信号转换成电压信号,再经RC一阶滤波电路滤除高频干扰信号(R6和C16)。然后通过一级电压跟随器来实现阻抗匹配,最后再经过比例运算放大电路将电压信号调整到符合处理器输入要求的范围内,这里采用的LMV358运放可以将输出限制在0~3.3V。图12中的C17和C18是滤波电容。

        待测电压信号为Vdc1,调理输出信号为Vad1,传感器原副边的转换比例为n,因此调理输出信号与待测信号的关系为:

V_{dc1}=\frac{V_{ad1}\cdot R_{4}}{n\cdot R_{5}}

图9 输入电压检测电路原理图 

(2)输出电压检测电路(VSM025A匝数比n=2.5)

        输出电压信号的检测电路如图10所示,其实现原理参考输入电压检测电路,这里不再赘述。待测电压信号为Vdc2,调理输出信号为Vad2,传感器原副边的转换比例为n,因此调理输出信号与待测信号的关系为:

V_{dc2}=\frac{V_{ad2}\cdot R_{7}}{n\cdot R_{8}}

 图10 输出电压检测电路原理图 

(3)输入电流检测电路(CSM005A匝数比n=200)

         输入电流信号的检测电路如图11所示,实现原理同样参考输入电压检测电路。待测电流信号为Idc1,调理输出信号为Vad3,传感器原副边的转换比例为n,因此调理输出信号与待测信号的关系为:

I_{dc1}=n\cdot \frac{V_{ad3}}{R_{10}}

图11 输入电流检测电路原理图

5 实验验证

 (1)实验平台

        对Boost电路进行测试,验证其能否正常工作。利用STM32产生50%占空比的PWM信号对电路的开关管进行控制,给Boost电路加70V的直流电压作为输入,并在输出端接100Ω的电阻作为负载,通过示波器观察电路的输出电压波形。

 图12 Boost电路功能验证测试平台

 (2)实验波形

       如下图是Boost电路的测试波形图,从图中可以看出开关管两端波形的占空比为50%,输入电压为70V左右,而输出电压为输入电压的两倍,约为140V。测试结果与Boost电路的理论基本一致,由此验证了本文对于Boost硬件电路设计的合理性。

  图13 Boost电路测试输出波形

Boost相关电路资料下载链接:

Boost电路相关资料 - 电路城 (cirmall.com)

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Boost电路硬件设计实例 的相关文章

  • MS5543单通道、16位、串行通信、高速ADC转换芯片

    产品简述 MS5543 是一款单通道 16 位 串行输入 电压输出的数模 转换器 采用 2 7V 至 5 5V 单电源供电 输出范围为 0V 至 V REF 在输出范围内保证单调性 在温度范围为 40 C 至 85 C 能够提供 1LSB
  • 细说三极管

    文章目录 前言 一 什么是三极管 二 三极管是哪三级 1 基极 2 集电极 3 发射极 三 三极管的分类 1 根据材料 2 根据结构 3 根据功率 4 根据工作频率 5 根据制作工艺 6 根据制外形封装 7 根据用途 四 三极管的工作原理
  • 数字万用表的使用

    参考 连3岁小孩子都能看懂的万用表使用方法 地址 https www bilibili com video BV1Gx411z7x2 p 1 vd source cc0e43b449de7e8663ca1f89dd5fea7d 目录 万用表
  • 关键元器件选型设计指引--通用逻辑器件(逻辑IC)

    1 物料分类 标准逻辑器件 标准数字逻辑IC集成电路可以从工艺 功能和电平三个方面划分 列表所示 注 常见的逻辑电路有54军用系列和74商用系列 两者电路功能一致 本文仅讨论74系列 按照制造工艺特点分类 工艺 逻辑器件产品族 优点 不足
  • AD20铺铜显示和隐藏的设置

    如果只想隐藏当前选中的铜皮 那么就选中对应需要隐藏的铜 然后鼠标右击 在弹出的对话框中选择 铺铜操作 隐藏选中铺铜 需要隐藏一部分铜皮 即打开铺铜管理器 选择菜单栏中 工具 铺铜 铺铜管理器 在弹出的铺铜管理器对话框中 想将哪些铜皮去进行隐
  • EMC经典问答85问(75-77问)

    75 某个手持测试产品 可以电池供电 同时也可以采取外置适配器供电方式 适配器单独带负载辐射发射 RE 测试可以通过 手持产品在电池供电情况下辐射发射 RE 也可以通过 并且余量都比较大 但是在带外置适配器的情况下 却在 160M 频率左右
  • 微弱直流电压/电流信号的采样电路 --滤波跟随放大

    要求将待测的电压 1mV 1000mV 电流 1mA 100mA 采样出来传给单片机 我的思路是 电压采样先用放大电路放大 再进行滤波 把50Hz的交流电干扰滤除 然后再进行模数转换传给单片机 电流的话用一个采样电阻 然后对其电压采样后推算
  • 立创EDA专业版(网页,全在线模式)开源导入立创EDA专业版(PC端,半离线模式)

    我个人从一开始就使用立创EDA专业版的半离线模式 是因为既可以离线画板 又可以在在线的时候使用系统库 但难免完美 就不如将立创EDA专业版 网页 全在线模式 导入立创EDA专业版 PC端 半离线模式 时就很麻烦 下面来说下怎么操作 在立创E
  • 继电器、并联的二极管和驱动三极管选型实战演练

    继电器选型原则 继电器的选用原则参见下表 在表中 必须确定 栏中有 号的项目被确定之后 就可选定一款继电器 如果有进一步的要求 需要进一步考虑 参考 栏中有 号的相应项目 下面对表格中的所有参数进行详细说明 触点 1触点负载 确定继电器所能
  • AD20/Altium designer——如何对PCB添加图片丝印、自定义LOGO、专属图案

    本篇介绍如何在PCB添加图案丝印并调节大小 主要步骤 图片转单色图 bmp格式 复制粘贴进word文档 再次复制到AD 1 选择图片用电脑自带的画图软件打开 2 将图片另存为 bmp格式 3 查看图片效果是否理想 图片是否需要取反色 选做
  • 硬件基础之集成运放

    一 技术理论 1 集成电路 集成电路是采用专门的制造工艺 在半导体单晶硅上 把晶体管 场效应管 二极管 电阻和电容等元器件以及它们之间的连线所组成的电路制作在一起 使其具有特定功能的芯片 2 集成运放 集成运放 全称集成运算放大器 是具有超
  • 【零基础玩转BLDC系列】基于反电动势过零检测法的无刷直流电机控制原理

    无刷直流电动机基本转动原理请参考 基于HALL传感器的无刷直流电机控制原理 基本原理及基础知识本篇不再赘述 目录 反电势过零检测法的原理 反电势过零检测实现方法 位置传感器的存在限制了无刷直流电机在某些特定场合中的应用 如 使电机系统的体积
  • ORcad Capture CIS元件库管理

    当电子元器件数量多到一定程度的时候 所有器件都集中在一个library里杂乱无章 使用起来相当不方便 时间长了也很容易把相似的器件封装混淆 如何规范化整理 就成了一个让人头疼的问题 还有就是贴片时硬件工程师都要面对一个整理BOM的问题 小公
  • DC/DC闭环控制的丘克(Cuk)变换电路原理设计及实验仿真

    如果将降压 Buck 变换电路和升压 Boost 变换电路的拓扑结构进行对偶变换 即Boost变换电路和Buck变换电路串联在一起得到一种新的电路拓扑结构 丘克 CUK 变换电路 如图所示 Cuk变换电路的输入和输出均有电感 增加电感的值
  • ADS Via Designer 快速建模举例

    如何快速地对设计中的差分过孔进行建模 是layout前仿真中经常遇到的问题 好在目前主流的仿真软件都提供了独立的过孔建模向导 可以很方便地进行操作 本文以ADS提供的Via Designer向导为例 展示如何快速完成过孔的建模操作 以下图所
  • 无线网络管理系统与无线路由器的区别

    第5章 波形发生器软件设计 本章我们将介绍系统的软件设计 系统中控制软件占有很重要的地位 它不仅要产生波形数据 控制波形的发生 还要控制显示电路和键盘电路 因此系统软件的好坏直接决定着系统的功能和稳定 5 1软件的总体结构 在本系统中 由于
  • 学习区分dB、dBm、dBuV、dBi

    dB 对于分贝的概念 很多朋友最早接触这个概念 是用 分贝 评估声音的大小 声音的大小用分贝 dB 表示 是一种对数单位 用来描述声音的强度或功率比例 如果P是我们需要测试的声压级或声功率级 P0是参考值 通常取为标准听觉阈限的声压级 X
  • 1.69寸SPI接口240*280TFT液晶显示模块使用中碰到的问题

    1 69寸SPI接口240 280TFT液晶显示模块使用中碰到的问题说明并记录一下 在网上买了1 69寸液晶显示模块 使用spi接口 分辨率240 280 给的参考程序是GPIO模拟的SPI接口 打算先移植到FreeRtos测试 再慢慢使用
  • 如何正确使用电感和磁珠

    电感和磁珠不仅在外形上相似 而且功能上也存在很多相同之处 有些应用场景下 两者甚至可以相互替代使用 但是 电感和磁珠之间真的能完全划上等号吗 或许 以下的比较会让你更加清楚地知道两者之间存在的差异 额定电流 当电感的工作电流超过其额定电流时
  • 有效降低EMI干扰的PCB设计原则

    降低EMI干扰的一些PCB设计建议 1 通过在所有信号下提供低阻抗 连续的返回路径来减少地面反弹 尤其是在表层布线时 2 保持所有走线距离板的边缘至少5倍信号线宽 3 对于关键信号 尽量采用带状线布局 4 将高速率 大电流的组件尽可能远离I

随机推荐