C/C++内存管理详解[转载]

2023-05-16

[我觉得这是一篇很不错的文章,对C和C++的程序员来说,很有实用价值,故推荐给大家]

 

作者:PingPong    文档来源:CSDN

 

伟大的Bill Gates 曾经失言:

  640K ought to be enough for everybody — Bill Gates 1981

  程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本文的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。

  1、内存分配方式

  内存分配方式有三种:

  (1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。

  (2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

  (3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

  2、常见的内存错误及其对策

  发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:

  * 内存分配未成功,却使用了它。

  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行

  检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

  * 内存分配虽然成功,但是尚未初始化就引用它。

  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

  * 内存分配成功并且已经初始化,但操作越过了内存的边界。

  例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

  * 忘记了释放内存,造成内存泄露。

  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。

  动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/delete同理)。

  * 释放了内存却继续使用它。
 
  有三种情况:

  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。

  (2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。

  (3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

  【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。

  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

  【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。

  【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

  3、指针与数组的对比

  C++/C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。

  数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。

  指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。

  下面以字符串为例比较指针与数组的特性。

  3.1 修改内容

  示例3-1中,字符数组a的容量是6个字符,其内容为hello。a的内容可以改变,如a[0]= 'X’。指针p指向常量字符串“world”(位于静态存储区,内容为world),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句 p[0]= 'X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。

char a[] = “hello”;
a[0] = 'X’;
cout << a << endl;
char *p = “world”; // 注意p指向常量字符串
p[0] = 'X’; // 编译器不能发现该错误
cout << p << endl;      示例3.1 修改数组和指针的内容

  3.2 内容复制与比较

  不能对数组名进行直接复制与比较。示例7-3-2中,若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较b和a的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。

  语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数malloc为p申请一块容量为strlen(a)+1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。

// 数组…
char a[] = "hello";
char b[10];
strcpy(b, a); // 不能用 b = a;
if(strcmp(b, a) == 0) // 不能用 if (b == a)

// 指针…
int len = strlen(a);
char *p = (char *)malloc(sizeof(char)*(len+1));
strcpy(p,a); // 不要用 p = a;
if(strcmp(p, a) == 0) // 不要用 if (p == a)
…       示例3.2 数组和指针的内容复制与比较

  3.3 计算内存容量

  用运算符sizeof可以计算出数组的容量(字节数)。示例7-3-3(a)中,sizeof(a)的值是12(注意别忘了’’)。指针p指向a,但是 sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。 C++/C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。

  注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。示例7-3-3(b)中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)。

char a[] = "hello world";
char *p = a;
cout<< sizeof(a) << endl; // 12字节
cout<< sizeof(p) << endl; // 4字节     示例3.3(a) 计算数组和指针的内存容量

void Func(char a[100])
{
 cout<< sizeof(a) << endl; // 4字节而不是100字节
}

     示例3.3(b) 数组退化为指针

  4、指针参数是如何传递内存的?

  如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?

void GetMemory(char *p, int num)
{
 p = (char *)malloc(sizeof(char) * num);
}
void Test(void)
{
 char *str = NULL;
 GetMemory(str, 100); // str 仍然为 NULL
 strcpy(str, "hello"); // 运行错误
}      示例4.1 试图用指针参数申请动态内存

  毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把 _p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。

  如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例4.2。

void GetMemory2(char **p, int num)
{
 *p = (char *)malloc(sizeof(char) * num);
}
void Test2(void)
{
 char *str = NULL;
 GetMemory2(&str, 100); // 注意参数是 &str,而不是str
 strcpy(str, "hello");
 cout<< str << endl;
 free(str);
}      示例4.2用指向指针的指针申请动态内存

  由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例4.3。

char *GetMemory3(int num)
{
 char *p = (char *)malloc(sizeof(char) * num);
 return p;
}
void Test3(void)
{
 char *str = NULL;
 str = GetMemory3(100);
 strcpy(str, "hello");
 cout<< str << endl;
 free(str);
}       示例4.3 用函数返回值来传递动态内存

  用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例4.4。

char *GetString(void)
{
 char p[] = "hello world";
 return p; // 编译器将提出警告
}
void Test4(void)
{
 char *str = NULL;
 str = GetString(); // str 的内容是垃圾
 cout<< str << endl;
}      示例4.4 return语句返回指向“栈内存”的指针

  用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world”而是垃圾。
如果把示例4.4改写成示例4.5,会怎么样?

char *GetString2(void)
{
 char *p = "hello world";
 return p;
}
void Test5(void)
{
 char *str = NULL;
 str = GetString2();
 cout<< str << endl;
}     示例4.5 return语句返回常量字符串

  函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。

  5、杜绝“野指针”

  “野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。 “野指针”的成因主要有两种:

  (1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。例如

char *p = NULL;
char *str = (char *) malloc(100);
  (2)指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。

  (3)指针操作超越了变量的作用范围。这种情况让人防不胜防,示例程序如下:

class A
{
 public:
  void Func(void){ cout << “Func of class A” << endl; }
};
void Test(void)
{
 A *p;
 {
  A a;
  p = &a; // 注意 a 的生命期
 }
 p->Func(); // p是“野指针”
}


  函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了“野指针”。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。

  6、有了malloc/free为什么还要new/delete?

  malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。

  对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。

  因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意 new/delete不是库函数。我们先看一看malloc/free和new/delete如何实现对象的动态内存管理,见示例6。

class Obj
{
 public :
  Obj(void){ cout << “Initialization” << endl; }
  ~Obj(void){ cout << “Destroy” << endl; }
  void Initialize(void){ cout << “Initialization” << endl; }
  void Destroy(void){ cout << “Destroy” << endl; }
};
void UseMallocFree(void)
{
 Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存
 a->Initialize(); // 初始化
 //…
 a->Destroy(); // 清除工作
 free(a); // 释放内存
}
void UseNewDelete(void)
{
 Obj *a = new Obj; // 申请动态内存并且初始化
 //…
 delete a; // 清除并且释放内存
}     示例6 用malloc/free和new/delete如何实现对象的动态内存管理

  类Obj的函数Initialize模拟了构造函数的功能,函数Destroy模拟了析构函数的功能。函数UseMallocFree中,由于 malloc/free不能执行构造函数与析构函数,必须调用成员函数Initialize和Destroy来完成初始化与清除工作。函数 UseNewDelete则简单得多。

  所以我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/free和new/delete是等价的。

  既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。

  如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存 ”,理论上讲程序不会出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。

  7、内存耗尽怎么办?

  如果在申请动态内存时找不到足够大的内存块,malloc和new将返回NULL指针,宣告内存申请失败。通常有三种方式处理“内存耗尽”问题。

  (1)判断指针是否为NULL,如果是则马上用return语句终止本函数。例如:

void Func(void)
{
 A *a = new A;
 if(a == NULL)
 {
  return;
 }
 …
}
  (2)判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行。例如:

void Func(void)
{
 A *a = new A;
 if(a == NULL)
 {
  cout << “Memory Exhausted” << endl;
  exit(1);
 }
 …
}
  (3)为new和malloc设置异常处理函数。例如Visual C++可以用_set_new_hander函数为new设置用户自己定义的异常处理函数,也可以让malloc享用与new相同的异常处理函数。详细内容请参考C++使用手册。

  上述(1)(2)方式使用最普遍。如果一个函数内有多处需要申请动态内存,那么方式(1)就显得力不从心(释放内存很麻烦),应该用方式(2)来处理。

  很多人不忍心用exit(1),问:“不编写出错处理程序,让操作系统自己解决行不行?”

  不行。如果发生“内存耗尽”这样的事情,一般说来应用程序已经无药可救。如果不用exit(1) 把坏程序杀死,它可能会害死操作系统。道理如同:如果不把歹徒击毙,歹徒在老死之前会犯下更多的罪。

  有一个很重要的现象要告诉大家。对于32位以上的应用程序而言,无论怎样使用malloc与new,几乎不可能导致“内存耗尽”。我在Windows 98下用Visual C++编写了测试程序,见示例7。这个程序会无休止地运行下去,根本不会终止。因为32位操作系统支持“虚存”,内存用完了,自动用硬盘空间顶替。我只听到硬盘嘎吱嘎吱地响,Window 98已经累得对键盘、鼠标毫无反应。

  我可以得出这么一个结论:对于32位以上的应用程序,“内存耗尽”错误处理程序毫无用处。这下可把Unix和Windows程序员们乐坏了:反正错误处理程序不起作用,我就不写了,省了很多麻烦。

  我不想误导读者,必须强调:不加错误处理将导致程序的质量很差,千万不可因小失大。

void main(void)
{
 float *p = NULL;
 while(TRUE)
 {
  p = new float[1000000];
  cout << “eat memory” << endl;
  if(p==NULL)
   exit(1);
 }
}


  示例7试图耗尽操作系统的内存

  8、malloc/free 的使用要点

  函数malloc的原型如下:

void * malloc(size_t size);
  用malloc申请一块长度为length的整数类型的内存,程序如下:

int *p = (int *) malloc(sizeof(int) * length);
  我们应当把注意力集中在两个要素上:“类型转换”和“sizeof”。

  * malloc返回值的类型是void *,所以在调用malloc时要显式地进行类型转换,将void * 转换成所需要的指针类型。

  * malloc函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。我们通常记不住int, float等数据类型的变量的确切字节数。例如int变量在16位系统下是2个字节,在32位下是4个字节;而float变量在16位系统下是4个字节,在32位下也是4个字节。最好用以下程序作一次测试:

cout << sizeof(char) << endl;
cout << sizeof(int) << endl;
cout << sizeof(unsigned int) << endl;
cout << sizeof(long) << endl;
cout << sizeof(unsigned long) << endl;
cout << sizeof(float) << endl;
cout << sizeof(double) << endl;
cout << sizeof(void *) << endl;
  在malloc的“()”中使用sizeof运算符是良好的风格,但要当心有时我们会昏了头,写出 p = malloc(sizeof(p))这样的程序来。

  * 函数free的原型如下:

void free( void * memblock );
  为什么free函数不象malloc函数那样复杂呢?这是因为指针p的类型以及它所指的内存的容量事先都是知道的,语句free(p)能正确地释放内存。如果p是NULL指针,那么free对p无论操作多少次都不会出问题。如果p不是NULL指针,那么free对p连续操作两次就会导致程序运行错误。

  9、new/delete 的使用要点

  运算符new使用起来要比函数malloc简单得多,例如:

int *p1 = (int *)malloc(sizeof(int) * length);
int *p2 = new int[length];
  这是因为new内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new的语句也可以有多种形式。例如

class Obj
{
 public :
  Obj(void); // 无参数的构造函数
  Obj(int x); // 带一个参数的构造函数
  …
}
void Test(void)
{
 Obj *a = new Obj;
 Obj *b = new Obj(1); // 初值为1
 …
 delete a;
 delete b;
}
  如果用new创建对象数组,那么只能使用对象的无参数构造函数。例如

Obj *objects = new Obj[100]; // 创建100个动态对象
  不能写成

Obj *objects = new Obj[100](1);// 创建100个动态对象的同时赋初值1
  在用delete释放对象数组时,留意不要丢了符号'[]’。例如

delete []objects; // 正确的用法
delete objects; // 错误的用法
  后者相当于delete objects[0],漏掉了另外99个对象。

  10、一些心得体会

  我认识不少技术不错的C++/C程序员,很少有人能拍拍胸脯说通晓指针与内存管理(包括我自己)。我最初学习C语言时特别怕指针,导致我开发第一个应用软件(约1万行C代码)时没有使用一个指针,全用数组来顶替指针,实在蠢笨得过分。躲避指针不是办法,后来我改写了这个软件,代码量缩小到原先的一半。

  我的经验教训是:

  (1)越是怕指针,就越要使用指针。不会正确使用指针,肯定算不上是合格的程序员。

  (2)必须养成“使用调试器逐步跟踪程序”的习惯,只有这样才能发现问题的本质。

 
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

C/C++内存管理详解[转载] 的相关文章

  • 《大厂算法面试》小书

    算法面试是大多数小伙伴的弱势 xff0c 但是大厂几乎都会考算法 xff0c 如果在面试过程中不刻意准备一下算法 xff0c 很大概率被挂 其实对于前端和移动端来说 xff0c 算法要求的并不是很高 xff0c 只要把一些常见的算法题刷完
  • ROS通信架构上——Topic和Msg

    Topic 异步通信方式 Node间通过publish subscribe机制通信 相关的命令 xff1a rostopic rostopic list 列出当前所有topicrostopic info topic name 显示某个top
  • Type-C显示器是什么,Type-C显示器的5大优势

    在显示器领域内 xff0c USB Type C接口还处于发展阶段 xff0c 目前已经在新推出的一些高端显示器和旗舰显示器中有配置 USB Type C接口的出现 xff0c 将会形成以显示器为核心的桌面解决方案 xff0c 用户可以把任
  • SLAM综述

    SLAM综述 前言一 概述二 Lidar SLAM激光雷达传感器激光雷达SLAM系统 xff08 Lidar SLAM System xff09 2D SLAM3D SLAM深度学习与激光雷达Feature amp Detection xf
  • VisionPro使用 C# 开发

    VisionPro 常用控件的说明 工具设置窗体 CogPMAlignEditV2 模版匹配设置窗体控件 CogPMAlignEditV2 Subject 工具关联对象 如 xff1a CogPMAlignEditV2 Subject 61
  • rosdep update 失败及解决办法

    一 问题 reading in sources list data from etc ros rosdep sources list d Hit https raw githubusercontent com ros rosdistro m
  • 在STM32上运行ROS节点——rosserial&stm32开发及调试方法

    近期接手了一些ROS机器人项目 xff0c 这里将开发中遇到的问题和解决方法记录下来 stm32强大的外设资源为机器人底层设备控制带来了极大的便利 xff0c 本文简述借助rosserial项目在stm32中运行ROS节点的方法 基本原理
  • 动态存储区、静态存储区、堆和栈的区别

    C c 43 43 程序经过编译连接后形成的二进制映像文件 xff0c 这文件包含 xff1a 栈 xff0c 堆 xff0c 数据段 xff08 只读数据段 xff0c 已经初始化读写数据段 xff0c 未初始化数据段即BBS xff09
  • kubemini-基础使用

    起始 minikube 是一个本地的 k8s 专注于为 k8s 创建一个简单的学习和开发环境 你只需要一个 Docker 或者类似兼容的 容器 xff0c 或者一个虚拟机环境 xff0c k8s 只需要一个单独的命令 xff1a minik
  • 详解信号量和互斥锁之间的区别和联系

    一 xff1a 信号量与互斥锁之间的区别 xff1a 1 xff1a 互斥量用于线程的互斥 xff0c 信号线用于线程的同步 这是互斥量和信号量的根本区别 xff0c 也就是互斥和同步之间的区别 2 xff1a 互斥量值只能为0 1 xff
  • python基础学习(十二)——python中代码的执行顺序以及if __name__ ==‘__main__‘作用和原理

    xff08 1 xff09 代码执行顺序 python程序是顺序执行的 xff0c Python中首先执行最先出现的非函数定义和非类定义的没有缩进的代码 python程序执行时 按照自上而下的顺序 xff1a 首先执行没有缩进的代码 xff
  • c学习--不同c文件中的同名全局变量及同名函数53

    如果在不同的c文件中定义了同名的全局变量 xff0c 则它们会占用相同的内存空间 xff0c 而且编译链接时不会报错 xff01 这可以参考全局变量的内存初始化顺序 对于局部变量而言 xff0c 内存分配的顺序和代码的顺序是一样的 全局变量
  • 基于STM32的FreeRTOS学习之任务基础知识(六)

    记录一下 xff0c 方便以后翻阅 RTOS系统的核心是任务管理 xff0c 初学RTOS系统必须先掌握任务的创建 删除 挂起和恢复等操作 1 什么是多任务系统 玩裸机一般都是在main函数里用while 1 做一个死循环完成所有处理 xf
  • git 推送出现 “fatal: The remote end hung up unexpectedly“ 解决方案

    https blog csdn net qq 41241767 article details 98181952 git 推送出现 34 fatal The remote end hung up unexpectedly 34 解决方案 h
  • 操作系统的设计指导思想——主奴机制

    在学习操作系统的过程中我们会发现一个问题 xff1a 应用程序是应用程序 xff0c 操作系统也是程序 xff0c 操作系统程序凭什么能对应用程序进行组织 管理和协调而不受应用程序损害呢 xff1f 我们认为凭的是特权机制 要想让操作系统做
  • VScode如何配置Git

    注意 xff1a 食用本篇博客的前提是你已经安装好了Git xff0c 并且也有一定的Git基础 因为有些git中比较常用的功能我会略过 第一步 xff1a 配置Git环境变量 右键 我的电脑 xff0c 选择 属性 xff0c 在弹出的对
  • FMC/FSMC/EXMC总线NORFlash/PSRAM接口(异步-复用-不突发/同步-复用-突发)

    请勿转载 目录 1 简介 1 1 框图 1 2 接口定义 1 3 读写时序图 时序配置参数 1 4 PSRAM控制器异步工作模式分类 1 5 PSRAM寄存器配置 1 5 1 控制寄存器BCR 1 5 2 片选时序寄存器BTR 1 5 3
  • 开平方_复数有效值+角度的verilog代码

    1 逐位比较法 二进制 FPGA篇 xff08 一 xff09 基于verilog的定点开方运算 1 逐次逼近算法 该篇文章中有详细描述 假设被开方数rad i 7 0 xff0c 则结果qout 3 0 位宽为4位 xff0c 从最高位到
  • GOOSE报文分析_详解GOOSE服务

    https www cnblogs com software4y p 10017602 html http blog sina com cn s blog af8298410102wnvm html https www cnblogs co
  • 循环冗余校验(CRC)之verilog实现

    有一个网站在这一方面做的特别好 xff0c 直接生成代码 链接 xff1a http www easics com webtools crctool 循环冗余校验 xff0c 也称为CRC检验 xff0c 这是一个很常见的 xff0c 很成

随机推荐

  • 从原理上解释什么是DDR的ZQ校准?

    前言 首先我们我们看下下图的电路 xff0c 在DDR的电路中通常有ZQ部分的电路 xff0c 外接1 高精度的240ohm电阻 xff0c 那么这个240ohm电阻究竟是做什么用的呢 xff1f 很多做了硬件或者驱动开发很多年的工程师仍然
  • 串行数据异步动态相位采样处理iodelay-iserdes应用+CDR数据恢复方案

    目录 一 用iserdes的LVDS视频接口 二 LVDS 4倍异步过采样 ISERDES2 三 8倍过采样 CDR数据恢复 Select IO 替代 RocketIO 典型应用SD SDI 四 4倍过采样 CDR数据恢复 一 用iserd
  • 接收灵敏度dbm与W

    一 基本概念 xff1a 接收灵敏度 官方概念 xff1a 接收机能够识别到的 最低的电磁波能量 单位也是dBm 解读 xff1a 接收灵敏度 xff0c 就是你的耳朵能听到的最小的声音 耳朵灵敏度高的 xff0c 能够听到很远的声音 例如
  • 三段式过流保护、差动保护

    1 基本原理 供电系统中的线路 设备等故障 xff0c 会产生短路电流 短路电流比线路正常工作时大很多 通过电流互感器测量这个电流值 xff0c 和电流值的持续时间 xff0c 达到整定值时输出跳闸信号 xff0c 这个就是过电流保护的基本
  • Unexpandable Clocks不可扩展时钟 UG903

    同源时钟可能同步 xff0c 可能异步 xff1f 同源时钟由同一个PLL MMCM产生 xff0c 相位固定 xff0c 能否产生小数倍关系 xff1f 不可扩展时钟能否归类到异步时钟 xff1f 不可扩展时钟是指时钟引擎无法在1000个
  • allegro 尺寸标注操作未到板边的处理

    1 进入尺寸标注 2 右击选择线性 xff0c parameters中可以改参数 xff0c 默认即可 3 打开尺寸层 xff0c 点击板边框 如果有圆弧没有标注到板边 xff0c 可以在右侧find中关闭其它项 xff0c 点击两个板边标
  • 安装boost

    安装boost 从官网下载并解压到适当位置 Boost网站 在解压后的目录中找到 bootstrap bat点击运行 xff0c 并等待结束 这时会出现b2 exe文件 xff0c 点击运行 xff0c 耐心等待结束 xff08 安装后产生
  • 基于PCIe的NVMe协议在FPGA中实现方法

    NVMe协议是工作在PCIE的最上层协议层的 xff0c 故需要先搞清楚PCIE 本文基于Xilinx的UltraScale 43 xff0c 开发工具为Vivado2021 2 学习中以spec为主 xff0c 其它资料辅助参考 重点介绍
  • PX4地面参数配置

    1 空速计 在不使用空速计的情况下 xff0c 配置CBRK AIRSPD CHK参数失能传感器 xff0c waining消失 2 数传部分 配置SER TEL1 BAUD的波特率与数传一致 xff0c 在地面站选择数传端口进行连接 xf
  • 企业微信公众账号自定义应用模块中撤回历史消息的方法

    企业微信 xff0c 公众账号自定义应用模块中撤回历史消息的方法 注意 xff1a 此方法适用于撤回超过24小时的历史消息 下载这个工具 xff1a postman xff1a http www downza cn soft 205171
  • windows的BAT或者linux的VI下批量更改替换文件名的脚本

    windows 的BAT 或者linux 的VI 下批量更改替换文件名的脚本 本来离开写脚本有些日子了 xff0c 倒是现在有些文件处理或者EXCEL 工作簿要处理的话 xff0c 还是会用简化流程来处理 脚本函数则帮我解决了很多麻烦事 昨
  • 那些年,我们一起读过的《JAVA与模式》

    那些年 xff0c 我们一起读过的 JAVA与模式 刚上大二 xff0c 买回来那一本厚厚的 JAVA与模式 时 xff0c 我还很不舍得 xff0c 这价格 xff0c 可以供一周的生活费了 既然买了 xff0c 就得读一读吧 先说说阎宏
  • 室内定位技术及机场方案建议

    室内定位技术发展现状 在1996年左右 xff0c 美国联邦通信委员会 xff08 FCC xff09 要求移动运营商为移动电话用户提供E 911 xff08 紧急救援 xff09 服务 1999年 xff0c FCC又对定位精度做出新的要
  • 如何让ActiveXObject( "Microsoft.XmlDom ")对象在非IE浏览器下显示数据?firefox(火狐)

    在IE浏览器下 xff0c xmlDom对象一般这样被定义 xff1a var xmlDom 61 new ActiveXObject 34 Microsoft XMLDOM 34 为了兼容Firefox xff0c 需要修改为 xff1a
  • BIM+GIS建设与运维管理工作建议

    背景 xff1a BIM 43 GIS项目的建设意见 xff0c 就弱电的建设和运维方向提出相关需求 xff1b 在BIM模型建设时期 xff0c 面向弱电专业的建设建议 参考行业规范 xff1a 在机场工程项目的建设阶段 xff0c 各参
  • 修改svn默认端口

    Subversion有两种不同的配置方式 xff0c 一种基于它自带的轻量级服务器svnserve xff0c 一种基于非常流行的Web服务器Apache 根据不同的配置方式 xff0c Subversion使用不同的端口对外提供服务 基于
  • 项目、系统开发中的需求分析说明书和需求规格说明书的区别

    项目组成员在针对要开发的系统做需求调研后 xff0c 就要编写对应的需求说明书 作为软件工程师 xff0c 你就得知道需求分析说明书和需求规格说明书的区别 xff0c 以期在正确的时候编写正确的需求文档 两者有何不同 xff1a xff08
  • 全景视频拼接的关键技术与步骤

    全景视频拼接是一种利用实景图像组成全景空间的技术 xff0c 它将多幅图像拼接成一幅大尺度图像或360度全景图 全景视频技术涉及到计算机视觉 计算机图形学 数字图像处理以及一些数学工具等技术 全景拼接基本步骤主要包括 xff1a 摄像机的标
  • Ubuntu18.04+ROS Realsense的安装与使用

    文章目录 前言一 安装软件包与librealsense1 内核检查2 Installing the packages 2022 11 21更新 xff1a 在换了ubuntu20 04 xff08 带有 xff09 5 15的内核报错后 x
  • C/C++内存管理详解[转载]

    我觉得这是一篇很不错的文章 xff0c 对C和C 43 43 的程序员来说 xff0c 很有实用价值 xff0c 故推荐给大家 作者 xff1a PingPong 文档来源 xff1a CSDN 伟大的Bill Gates 曾经失言 xff