Rplidar A2 激光雷达使用hector_slam进行建图

2023-05-16

手头上有一个Rplidar A2 激光雷达,通过其进行slam建图,如下。

在这里插入图片描述

环境:
1、Rplidar A2 激光雷达;
2、笔记本电脑;
3、Ubuntu 16.04;
4、ROS Kinetic。

1、安装雷达驱动

sudo apt-get install ros-kinetic-rplidar-ros

2、更改com port 权限

sudo chmod 666 /dev/ttyUSB0

3、测试扫描界面

roslaunch rplidar_ros view_rplidar.launch

成功的话,便会显示如下界面:
在这里插入图片描述

4、安装hector_slam库

这里采用hector_slam作为slam的方法。
安装:

sudo apt-get install ros-kinetic-hector-slam

5、在rplidar_ros中新建slam.launch文件

默认安装的rplidar_ros中并没有slam文件,我们在上一步安装slam库后,可以在rplidar_ros中新建一个slam.launch文件。

在rplidar_ros/launch/目录下添加slam.launch文件:

<launch>


<node pkg="hector_mapping" type="hector_mapping" name="hector_mapping" output="screen">
<!-- Frame names -->
<param name="pub_map_odom_transform" value="true"/>
<param name="map_frame" value="map" />
<param name="base_frame" value="base_link" />
<param name="odom_frame" value="base_link" />


<!-- Tf use -->
<param name="use_tf_scan_transformation" value="true"/>
<param name="use_tf_pose_start_estimate" value="false"/>


<!-- Map size / start point -->
<param name="map_resolution" value="0.05"/>
<param name="map_size" value="2048"/>
<param name="map_start_x" value="0.5"/>
<param name="map_start_y" value="0.5" />
<param name="laser_z_min_value" value = "-1.0" />
<param name="laser_z_max_value" value = "1.0" />
<param name="map_multi_res_levels" value="2" />


<param name="map_pub_period" value="2" />
<param name="laser_min_dist" value="0.4" />
<param name="laser_max_dist" value="5.5" />
<param name="output_timing" value="false" />
<param name="pub_map_scanmatch_transform" value="true" />
<!--<param name="tf_map_scanmatch_transform_frame_name" value="scanmatcher_frame" />-->


<!-- Map update parameters -->
<param name="update_factor_free" value="0.4"/>
<param name="update_factor_occupied" value="0.7" />    
<param name="map_update_distance_thresh" value="0.2"/>
<param name="map_update_angle_thresh" value="0.06" />


<!-- Advertising config --> 
<param name="advertise_map_service" value="true"/>
<param name="scan_subscriber_queue_size" value="5"/>
<param name="scan_topic" value="scan"/>
</node>


<node pkg="tf" type="static_transform_publisher" name="base_to_laser_broadcaster" args="0 0 0 0 0 0 /base_link /laser 100"/>


  <node pkg="rviz" type="rviz" name="rviz"
    args="-d $(find hector_slam_launch)/rviz_cfg/mapping_demo.rviz"/>


</launch>

6、slam建图

sudo chmod 666 /dev/ttyUSB0
roslaunch rplidar_ros slam.launch

通过稳定移动雷达,可以扫描出周围的环境,完成建图。如下:

在这里插入图片描述

7、保存slam得到的地图信息

首先,需要安装map_server包。

sudo apt-get install ros-kinetic-map-server

然后,保存图形。

rosrun map_server map_saver -f ~/my_map

如下:
在这里插入图片描述
至此,便完成了雷达的测试、slam建图、保存等工作。

注意:
在手动移动雷达过程中需要稳定,由于雷达没有imu功能,稍微晃动大一点便会导致定位失败,slam失败。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Rplidar A2 激光雷达使用hector_slam进行建图 的相关文章

  • 三维刚体变换

    欢迎访问我的博客首页 三维刚体变换 1 坐标系 1 1 空间坐标系 1 2 右手坐标系与像素坐标系 2 旋转与平移 2 1 推导旋转 2 2 推导平移 2 3 推导变换 2 4 刚体变换 2 5 坐标系旋转与向量旋转 3 链式变换 4 Ei
  • 正交矩阵的保范性:正交变换不改变向量的长度(范数)

    在推导使用SVD分解解方程时 用到了正交矩阵的保范性这一性质 1 正交矩阵定义 A mathbf A intercal A A A A
  • Ubuntu18.04 安装速腾聚创最新驱动RSLidar_SDK采集XYZIRT格式的激光点云数据 --SLAM不学无术小问题

    Ubuntu18 04 安装速腾聚创最新驱动RSLidar SDK采集XYZIRT格式的激光点云数据 新款驱动支持RS16 RS32 RSBP RS128 RS80 RSM1 B3 RSHELIOS等型号 注意 该教程旨在引导安装 可能现在
  • 基于深度相机的三维重建技术

    本文转载自http www bugevr com zblog id 14 原创作者bugeadmin 转载至我的博客 主要是为了备份 日后查找方便 谢谢原创作者的分享 三维重建 3D Reconstruction 技术一直是计算机图形学和计
  • 速腾聚创雷达最新驱动安装(包含ring和timestamp)运行lio-sam

    记录一下搞slam的过程 ring和timestamp 最近想跑lio sam 需要用到ring和timestamp两个参数 lio sam作者用的velodyne雷达是带这两个参数的 但是rs雷达的老版驱动录制的点云包没有这两个参数 在g
  • 使用EKF融合odometry及imu数据

    整理资料发现早前学习robot pose ekf的笔记 大抵是一些原理基础的东西加一些自己的理解 可能有不太正确的地方 当时做工程遇到的情况为机器人在一些如光滑的地面上打滑的情形 期望使用EKF利用imu对odom数据进行校正 就结果来看
  • 对最小二乘法的一点理解 - slam学习笔记

    我对最小二乘法的理解 在给定参数个数和函数模型之后 根据测试数据 找出与所有测试数据的偏差的平方和最小的参数 这里面应该有两个问题 1 为什么选取与真实数据平方和最小的拟合函数 2 如何求参数 为什么选取与真实数据平方和最小的拟合函数 极大
  • LeGO-LOAM 系列(1): LeGO-LOAM 安装以及概述

    一 github GitHub RobustFieldAutonomyLab LeGO LOAM 二 安装依赖 1 ROS Ubuntu 64 bit 16 04 ROS Kinetic 比较常规 就不赘述了 2 gtsam Georgia
  • IMU预积分的一些理解

    IMU预积分 算是比较简单的一个算法 无奈网上找到的资料都讲的晦涩难懂 看明白了也觉得不过如此 讲一下我的理解 整体流程 1 推导IMU离散运动方程 2 根据离散运动方程 进行预积分 并将预积分的误差项拆分出来 因为我们在定义误差的时候 有
  • 动态场景下基于实例分割的SLAM(毕业设计开题及语义分割部分)

    动态场景下基于实例分割的SLAM 毕业论文设计思路及流水 前言 今年选了个比较难的毕设题目 这里记录一下自己思路和流程 为之后的学弟学妹 划掉 铺个方向 会按日期不定期的更新 一 开题 2019 12 24 考研前选择课题是 利用深度学习对
  • Eigen::aligned_allocator

    如果STL容器中的元素是Eigen库数据结构 例如这里定义一个vector容器 元素是Matrix4d 如下所示 vector
  • LeGO-LOAM代码详细注释版

    学习LeGO LOAM时 写的代码注释github代码链接 一部分注释来自github用户wykxwyc 一部分来自网上查阅 还有一部分是自己的理解 持续更新中
  • Ubuntu20.04安装各种库----简洁版

    目录 Eigen3 Sophus Pangolin Ceres g2o 建议先装anaconda再装ros python opencv啥该有的都有了 下面仅仅安装ros没有的库 Eigen3 作用 线性代数开源库 提供了有关线性代数 矩阵和
  • 舒尔补-边际概率-条件概率

    margin求边际概率的时候喜欢通过舒尔补的形式去操作信息矩阵 如p b c 求积分p a b c da 从上图可知 边缘概率直接看协方差矩阵比较方便 边际概率的方差就是取对应联合分布中相应的协方差块 信息矩阵是由舒尔补的形式计算 此形式也
  • LeGO-LOAM中的数学公式推导

    LeGO LOAM是一种在LOAM之上进行改进的激光雷达建图方法 建图效果比LOAM要好 但是建图较为稀疏 计算量也更小了 本文原地址 wykxwyc的博客 github注释后LeGO LOAM源码 LeGO LOAM NOTED 关于代码
  • SLAM练习题(十一)—— G2O实战

    SLAM 学习笔记 写在前面的话 算是一点小小的感悟吧 估计位姿的方法有线性方法和非线性方法 线性方法就是特征点法中的2D 2D的对极约束 3D 2D的PnP问题 非线性方法有BA优化 它将位姿的估计问题转换成了一个误差关于优化量的最小二乘
  • LIO-SAM运行自己数据包遇到的问题解决--SLAM不学无数术小问题

    LIO SAM 成功适配自己数据集 注意本文测试环境 Ubuntu18 04 ROS melodic版本 笔者用到的硬件以简单参数 激光雷达 速腾聚创16线激光雷达 RS Lidar 16 IMU 超核电子CH110型 9轴惯导 使用频率1
  • 3.Open3D教程——点云数据操作

    点云数据 本教程阐述了基本的点云用法 随需要的文件链接 1 显示点云 import open3d as o3d import numpy as np print Load a ply point cloud print it and ren
  • 什么是深度学习的无监督学习与有监督学习

    无监督学习 深度学习中的无监督学习方法是一种训练算法 它在没有标注输出的情况下从输入数据中学习模式和特征 这种方法的核心是探索和理解数据的内在结构和分布 而不是通过已知的输出来指导学习过程 无监督学习在深度学习领域有许多不同的形式和应用 以
  • 如何从 Cassandra 获取排序计数器

    我有一排计数器 我想让它的列按值排序 有什么策略或数据模型吗 恐怕没有办法让 Cassandra 为你做这件事 您需要从 Cassandra 获取整行 对大行进行分页 并在客户端中对其进行排序 如果您的解决方案可以处理非最新结果 您可以使用

随机推荐

  • Debug Assertion Failed!解决方法详解

    1 野指针 2 内存泄露 解决方法 1 看一看你的程序里是不是有 ASSERT xff08 xff09 或 VERIFY xff08 xff09 语句 这两个宏是用来测试它的参数是否为真的 出现你说的 xff0c 这说明你的指针或表达试有问
  • 用tftp的方式在u_boot下 烧写uImage内核

    用 u boot 进行下载 uImage 一种 kernel 镜像文件 首先 把编译好的 uImage 文件放在 tftpboot 目录下 用网线把开发板和电脑连上 但PC上的网卡显示是没连接的 xff0c 这一点是没有关系的 xff0c
  • 利用NFS服务挂载NFS根文件系统

    嵌入式Linux根文件系统 xff0c 简单地说 xff0c 根文件系统就是一种目录结构 注意根文件系统和普通的文件系统的区别 常见的Linux根文件系统有 xff1a xff08 1 xff09 NFS xff08 网络根文件系统 xff
  • 数据校验之Checksum算法

    校验和 xff08 Checksum xff09 是网络协议使用的数据错误检测方法 xff0c 并且被认为比LRC xff08 纵向冗余校验 xff0c Longitudinal Redundancy Check xff0c LRC xff
  • 位序转字符串的一种高效方法

    include lt stdio h gt include lt stdlib h gt include lt malloc h gt include lt string h gt include lt arpa inet h gt def
  • OpenSIPS实战(一):OpenSIPS使用简介

    1 OpenSIPS是什么 OpenSIPS xff08 Open SIP Server xff09 是一个成熟的开源SIP服务器实现 可以作为SIP代理 路由器 但OpenSIPS不仅仅是一个SIP代理 路由器 xff0c 因为它包含了应
  • Floyd判圈算法(龟兔赛跑算法, Floyd's cycle detection)及其证明

    问题 xff1a 如何检测一个链表是否有环 xff08 循环节 xff09 xff0c 如果有 xff0c 那么如何确定环的起点以及环的长度 空间要求 xff1a 不能存储所经过的的每一个点 举例 xff1a x 0 61 1 x 0 61
  • Ubuntu配置GPU版本pytorch环境(含NVIDIA驱动+Cuda+Cudnn)

    本文更新于2018年8月底 概述 步骤如下 xff1a 1 安装Ubuntu 2 安装NVIDIA 显卡驱动 2 安装NVIDIA Cuda 3 安装NVIDIA CuDNN 4 安装GPU版本的PyTorch 安装Ubuntu 系统版本选
  • PyTorch中的Dataset、Dataloader和_DataloaderIter

    Dataset Pytorch中数据集被抽象为一个抽象类torch utils data Dataset xff0c 所有的数据集都应该继承这个类 xff0c 并override以下两项 xff1a len xff1a 代表样本数量 len
  • 彻底搞懂Lab 颜色空间

    本文参考wikipedia xff0c 并加入了自己的理解 xff0c 有不对的地方多多指教 名称 在开始之前 xff0c 先明确一下Lab颜色空间 xff08 Lab color space xff09 的名字 xff1a Lab的全称是
  • MiniFly微型四轴学习与开发日志(五)——遥控器任务详解

    文章目录 radiolinkTask无线连接任务usblinkTxTask usb发送任务usblinkRxTask usb接收任务commanderTask飞控指令发送任务keyTask按键扫描任务displayTask显示任务confi
  • .与::的使用区别

    今天尝试编写了一个小的Windows应用程序 xff0c 在编写的过程中用到MessageBox函数 但是一直不正确 我当时尝试MessageBox 34 NULL 34 34 Alert 34 34 ERROR 34 MB OK xff0
  • Pytorch中的contiguous理解

    最近遇到这个函数 xff0c 但查的中文博客里的解释貌似不是很到位 xff0c 这里翻译一下stackoverflow上的回答并加上自己的理解 在pytorch中 xff0c 只有很少几个操作是不改变tensor的内容本身 xff0c 而只
  • 一文读懂GAN, pix2pix, CycleGAN和pix2pixHD

    本文翻译 总结自朱俊彦的线上报告 xff0c 主要讲了如何用机器学习生成图片 来源 xff1a Games2018 Webinar 64期 xff1a Siggraph 2018优秀博士论文报告 人员信息 主讲嘉宾 姓名 xff1a 朱俊彦
  • Pytorch中的optimizer

    与优化函数相关的部分在torch optim模块中 xff0c 其中包含了大部分现在已有的流行的优化方法 如何使用Optimizer 要想使用optimizer xff0c 需要创建一个optimizer 对象 xff0c 这个对象会保存当
  • 图像质量评价之结构相似性SSIM(上)

    本文总结归纳自论文 image quality assessment from error visibility to structural similarity 概述 这篇文章主要介绍对图像质量进行打分评价的一个很经典的指数 结构相似性
  • 图像质量评价之结构相似性SSIM(中)

    在上一篇文章中 xff0c 我们介绍了对图像质量进行评价的必要性 主观评价和客观评价的两种标准 xff0c 以及设计符合人类直觉的评价标准的困难性和重要性 本来这篇文章想把我们的主角SSIM讲完 xff0c 但是发现前面需要写的铺垫有点长h
  • CS231n lecture 9:各大经典网络 AlexNet/VGG/GoogleNet/ResNet(上)

    本文翻译总结自CS231n Lecture 9 本篇将深入介绍当前的应用和研究工作中最火的几个CNN网络架构 AlexNet VGGNet GoogleNet和ResNet xff0c 它们都在ImageNet分类任务中有很好的表现 另外
  • STM32c8t6干扰GPS信号的解决方式

    项目目的 xff1a stm32解析GPS报文 xff0c 显示在oled上 项目遇到的问题 xff1a GPS模块接收信号不良 问题表现 xff1a 1 GPS可以搜星 xff0c 户外大约20颗 xff0c 但是锁定不了卫星 2 GPS
  • Rplidar A2 激光雷达使用hector_slam进行建图

    手头上有一个Rplidar A2 激光雷达 xff0c 通过其进行slam建图 xff0c 如下 环境 xff1a 1 Rplidar A2 激光雷达 xff1b 2 笔记本电脑 xff1b 3 Ubuntu 16 04 4 ROS Kin