PID通俗解释

2023-05-16

转载地址:http://blog.gkong.com/liaochangchu_117560.ashx


PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。

   1.比例控制

   有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。

   下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。

   操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。

   闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。

   比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。

   增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。

   单纯的比例控制很难保证调节得恰到好处,完全消除误差。

   2.积分控制

   PID控制器中的积分对应于图1中误差曲线 与坐标轴包围的面积(图中的灰色部分)。PID控制程序是周期性执行的,执行的周期称为采样周期。计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。

图1  积分运算示意图

   每次PID运算时,在原来的积分值的基础上,增加一个与当前的误差值ev(n)成正比的微小部分。误差为负值时,积分的增量为负。

   手动调节温度时,积分控制相当于根据当时的误差值,周期性地微调电位器的角度,每次调节的角度增量值与当时的误差值成正比。温度低于设定值时误差为正,积分项增大,使加热电流逐渐增大,反之积分项减小。因此只要误差不为零,控制器的输出就会因为积分作用而不断变化。积分调节的“大方向”是正确的,积分项有减小误差的作用。一直要到系统处于稳定状态,这时误差恒为零,比例部分和微分部分均为零,积分部分才不再变化,并且刚好等于稳态时需要的控制器的输出值,对应于上述温度控制系统中电位器转角的位置L。因此积分部分的作用是消除稳态误差,提高控制精度,积分作用一般是必须的。

   PID控制器输出中的积分部分与误差的积分成正比。因为积分时间TI在积分项的分母中,TI越小,积分项变化的速度越快,积分作用越强。

   3.PI控制

   控制器输出中的积分项与当前的误差值和过去历次误差值的累加值成正比,因此积分作用本身具有严重的滞后特性,对系统的稳定性不利。如果积分项的系数设置得不好,其负面作用很难通过积分作用本身迅速地修正。而比例项没有延迟,只要误差一出现,比例部分就会立即起作用。因此积分作用很少单独使用,它一般与比例和微分联合使用,组成PI或PID控制器。

   PI和PID控制器既克服了单纯的比例调节有稳态误差的缺点,又避免了单纯的积分调节响应慢、动态性能不好的缺点,因此被广泛使用。

   如果控制器有积分作用(例如采用PI或PID控制),积分能消除阶跃输入的稳态误差,这时可以将比例系数调得小一些。

   如果积分作用太强(即积分时间太小),相当于每次微调电位器的角度值过大,其累积的作用会使系统输出的动态性能变差,超调量增大,甚至使系统不稳定。积分作用太弱(即积分时间太大),则消除稳态误差的速度太慢,积分时间的值应取得适中。

   4.微分作用

   误差的微分就是误差的变化速率,误差变化越快,其微分绝对值越大。误差增大时,其微分为正;误差减小时,其微分为负。控制器输出量的微分部分与误差的微分成正比,反映了被控量变化的趋势。

   有经验的操作人员在温度上升过快,但是尚未达到设定值时,根据温度变化的趋势,预感到温度将会超过设定值,出现超调。于是调节电位器的转角,提前减小加热的电流。这相当于士兵射击远方的移动目标时,考虑到子弹运动的时间,需要一定的提前量一样。

  

图2   阶跃响应曲线

   图2中的c (∞)为被控量c (t)的稳态值或被控量的期望值,误差e(t) = c (∞) - c (t)。在图2中启动过程的上升阶段,当 时,被控量尚未超过其稳态值。但是因为误差e(t)不断减小,误差的微分和控制器输出的微分部分为负值,减小了控制器的输出量,相当于提前给出了制动作用,以阻碍被控量的上升,所以可以减少超调量。因此微分控制具有超前和预测的特性,在超调尚未出现之前,就能提前给出控制作用。

   闭环控制系统的振荡甚至不稳定的根本原因在于有较大的滞后因素。因为微分项能预测误差变化的趋势,这种“超前”的作用可以抵消滞后因素的影响。适当的微分控制作用可以使超调量减小,增加系统的稳定性。

   对于有较大的滞后特性的被控对象,如果PI控制的效果不理想,可以考虑增加微分控制,以改善系统在调节过程中的动态特性。如果将微分时间设置为0,微分部分将不起作用。

   微分时间与微分作用的强弱成正比,微分时间越大,微分作用越强。如果微分时间太大,在误差快速变化时,响应曲线上可能会出现“毛刺”。

   微分控制的缺点是对干扰噪声敏感,使系统抑制干扰的能力降低。为此可在微分部分增加惯性滤波环节。

   5.采样周期

   PID控制程序是周期性执行的,执行的周期称为采样周期。采样周期越小,采样值越能反映模拟量的变化情况。但是太小会增加CPU的运算工作量,相邻两次采样的差值几乎没有什么变化,将使PID控制器输出的微分部分接近为零,所以也不宜将采样周期取得过小。

   应保证在被控量迅速变化时(例如启动过程中的上升阶段),能有足够多的采样点数,不致因为采样点数过少而丢失被采集的模拟量中的重要信息。

   6.PID参数的调整方法

   在整定PID控制器参数时,可以根据控制器的参数与系统动态性能和稳态性能之间的定性关系,用实验的方法来调节控制器的参数。有经验的调试人员一般可以较快地得到较为满意的调试结果。在调试中最重要的问题是在系统性能不能令人满意时,知道应该调节哪一个参数,该参数应该增大还是减小。

   为了减少需要整定的参数,首先可以采用PI控制器。为了保证系统的安全,在调试开始时应设置比较保守的参数,例如比例系数不要太大,积分时间不要太小,以避免出现系统不稳定或超调量过大的异常情况。给出一个阶跃给定信号,根据被控量的输出波形可以获得系统性能的信息,例如超调量和调节时间。应根据PID参数与系统性能的关系,反复调节PID的参数。

   如果阶跃响应的超调量太大,经过多次振荡才能稳定或者根本不稳定,应减小比例系数、增大积分时间。如果阶跃响应没有超调量,但是被控量上升过于缓慢,过渡过程时间太长,应按相反的方向调整参数。

   如果消除误差的速度较慢,可以适当减小积分时间,增强积分作用。

   反复调节比例系数和积分时间,如果超调量仍然较大,可以加入微分控制,微分时间从0逐渐增大,反复调节控制器的比例、积分和微分部分的参数。

   总之,PID参数的调试是一个综合的、各参数互相影响的过程,实际调试过程中的多次尝试是非常重要的,也是必须的。
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

PID通俗解释 的相关文章

  • PID算法C语言模拟演示

    由于暂时没有硬件平台 网上找到一篇 用C语言实现PID控制代码 写的非常好 参照其文章 自己也动手实验了一下 下面通过几张 Execl 截屏说明下 Kp Ki Kd 三个参数不同取值时的输出效果 感谢CSDN博主 生活不易到处是坑 的原创文
  • PID算法,计算的是差值,是差值

    typedef struct float Kp 比例系数Proportional float Ki 积分系数Integral float Kd 微分系数Derivative float Ek 当前误差 float Ek1 前一次误差 e k
  • PID参数解析+调参经验笔记(经验法)

    在最前面推荐一个大佬的讲解 真的很浅显易懂 建议先看了解大概PID 链接 ps 2022 1 2更新pid通俗理解 out speed p err d now speed pid最核心算法 运动员参加100米跑步 假设这个人可以瞬间提速 但
  • 工程实践---ZN法整定PID

    工程实践 ZN法整定PID 知乎 zhihu com
  • 基于卡尔曼滤波进行四旋翼动力学建模(Simulink&Matlab)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码实现 1 概述 文献来源 摘要 由于近年来民用和军事领域对
  • 端口被占用怎么办?关闭占用端口的进程

    当你发现某个端口被占用时 但不知道是哪一个进程占用了端口 需要关闭占用该端口的进程 1 启动系统命令行 windows系统 win r 2 输入命令 netstat ano 可查看所有端口的使用情况 netstat aon findstr
  • 基于LabVIEW的PID算法解读

    记录一下 方便以后翻阅 下图是基本的PID算法实现方式 以及实现PID控制器所需的假设和转换 为实现PID控制器 LabVIEW要求算法对输入信号进行采样并离散积分和微分操作 一 误差计算 e k SP k PV k 上式中 e k 表示当
  • 【抗扰PID控制】干扰抑制PID控制器研究(Matlab代码实现)

    欢迎来到本博客 博主优势 博客内容尽量做到思维缜密 逻辑清晰 为了方便读者 座右铭 行百里者 半于九十 本文目录如下 目录 1 概述 2 运行结果 3 参考文献 4 Matlab代码 Simulink 文章讲解 1 概述 文献来源 抗扰PI
  • 串级PID与单极PID的区别

    目录 前言 一 什么是串级PID 二 串级PID与单极PID比较 1 控制小车开到某一位置 2 平衡小车速度控制 三 什么时候用串级PID 结语 前言 本文将讲述串级PID与单极PID的区别 并由此引出什么时候用串级PID 对于想深入学习P
  • 1_simulink简单入门_simulink仿真PID控制

    1 simulink简单入门 simulink仿真PID控制 2 simulink搭建RCL 电阻电感电容模块 毕业前想去做物联网还是或者linux 结果玩了一年多的电机控制 早就深知matlab simulink绕不过的 拖到现在 下班晚
  • 单端反激——隔离型DC/DC变换器的设计及仿真

    单端反激 隔离型DC DC变换器的设计及仿真 技术指标 1 原理分析 2 参数设计 3 仿真验证 技术指标 输入电压 V s m i n
  • 进程组必须有一个正在运行的领导进程吗?

    在类 Unix 操作系统中 如果一个进程 pid和它的pgid相等 则该进程是进程组的领导者 但是 如果进程领导者已经退出 并且同组中的其他进程仍在运行 那么谁是继任的领导者进程 没有继任领导者 一旦流程组领导者退出 该组就失去了领导权 没
  • multiprocessing.Pool 与 maxtasksperchild 产生相同的 PID

    我需要在一个与所有其他内存完全隔离的进程中运行一个函数多次 我想用multiprocessing为此 因为我需要序列化来自函数的复杂输出 我设置了start method to spawn 并使用一个游泳池maxtasksperchild
  • 如何获取生成的 java 进程的 PID

    我正在编写几个 java 程序 在完成我想做的任何事情后 需要在单独的 JVM 中杀死 清理 为此 我需要获取我正在创建的 java 进程的 PID jps l可在 Windows 和 Unix 上运行 您可以使用 java 程序调用此命令
  • 在 Unix 环境中检测过时的 pid 文件

    在 Unix 环境中检测陈旧 pid 文件的标准 跨平台方法是什么 假设我想终止应用程序的旧实例 但如果该应用程序已经退出 我当然不想破坏具有相同 PID 的不相关进程 现在我找到了一种在我的 Ubuntu 也可能是其他基于 GNU Lin
  • 什么是 .pid 文件以及它包含什么?

    我最近遇到了一个扩展名为 pid 的文件 并查看了它的内部 但没有找到太多内容 这文档 says Pid 文件是包含进程标识号 pid 的文件 该文件存储在文件系统的明确定义位置 从而允许其他程序找到正在运行的脚本的 pid 任何人都可以对
  • 如何迭代 PCB 以显示 Linux 内核模块中的信息?

    我想编写一个 Linux 内核模块 它可以显示所有正在运行的进程的 PID 我有以下代码 procInfo c My Kernel Module for process info include
  • 有没有办法链接linux的线程TID和pthread_t“线程ID”

    在 Linux 上 线程由pthread t或 TID 我正在寻找这两种线程 id 之间的桥梁 given a pthread t我可以得到它吗TID 显然 https stackoverflow com questions 558469
  • 如何在Windows中通过端口查找PID并使用java杀死找到的任务

    我需要通过进程端口在java代码中杀死进程 我可以在 cmd 中手动执行此操作 例如 C gt netstat a n o findstr 6543 TCP 0 0 0 0 6543 0 0 0 0 0 LISTENING 1145 TCP
  • 如何通过MATLAB命令获取外部程序(由MATLAB调用)的PID?

    我很好奇如何获取 MATLAB 在 Windows 中 调用的外部程序的 PID 例如 我通过命令调用 MATLAB 中的记事本 记事本 exe or 系统 记事本 exe 我想在调用此记事本后立即获取它的PID 由于一台计算机上可能会同时

随机推荐

  • UBUNTU使用RTL8811CU网卡(包含树莓派)

    8811cu 8821 github链接 一 普通的Ubuntu系统 xff0c 测试的是ubuntu18 04 下载驱动 从绿联中下载 xff1a 链接 下载解压后 xff0c chmod Linux文件夹 sudo chmod R 77
  • XTDrone ROS安装

    XTDrone ROS安装 本博客是参考XTDrone内容 xff0c 进行ROS安装和配置 参考连接 xff1a XTDrone 梗概ubuntu18的源 xff0c 并更新 参考 xff1a 更改ubunut源 sudo apt upd
  • PX4 GAZEBO无人机添加相机并进行图像识别

    PX4 GAZEBO无人机添加摄像头并进行图像识别 在之前完成了ROS的安装和PX4的安装 xff0c 并可以通过roslaunch启动软件仿真 接下来为无人及添加相机 xff0c 并将图像用python函数读取 xff0c 用于后续操作
  • XTDrone 视觉SLAM环境配置

    基于XTDrone的视觉SLAM章节 xff0c 进行环境配置 中途遇到了一些问题 xff0c 一一解决后成功完成了 xff0c 记录该流程 一 遇到的问题与参考链接 XTDrone相关参考连接 xff1a 链接依赖安装教程 xff1a O
  • XTDrone 视觉惯性里程计(VIO)配置

    XTDrone 视觉惯性里程计 xff08 VIO xff09 配置 参考XTDron进行配置 xff0c 对于依赖的配置写成文档 xff0c 参考主要为 xff1a XTDrone Ceres Solver 2 0 0 1 下载2 0 0
  • ros realsense D435i摄像头配置

    ros realsense D435i摄像头配置 之前在ubunut18中配置了ROS环境 xff0c 现在需要在此基础上 xff0c 配置D435i相机的SDK和ROS包 一 参考 https github com IntelRealSe
  • 树莓派4B(ubuntu mate系统)使用d435i运行vins

    树莓派4B xff08 ubuntu mate系统 xff09 使用d435i运行vins 提示本文为随手笔记 xff0c 并不严谨 xff0c 可参考 xff1a 博客和博客进行配置 树莓派 ubuntu mate 20系统安装ros的步
  • 树莓派3B+增加虚拟内存

    普通ubuntu系统增加虚拟内存参考 xff1a https blog csdn net weixin 42405819 article details 117886557 编译opencv时 xff0c 卡在了91 不动 xff0c 按照
  • ROS主机从机设置

    ROS主机从机设置 在ROS基础上 xff0c 配置主机和从机 xff0c 实现主机和从机的话题联通 配置hosts 在主机和从机的 etc hosts文件中 xff0c 配置如下内容 xff08 也许主机只需要写入 master xff1
  • VINS、MAVROS等的坐标系统一(草稿,未得出明确结果)

    由于不同算法之间的坐标系不同 xff0c 导致计算的结果混乱 xff0c 该博客的目的是记录和统一不同算法之间的坐标系 xff0c 保证坐标系的统一 一 VINS算法 vins算法 xff0c 使用D435I相机 该坐标方向为 xff1a
  • ROS学习笔记9-创建ros消息和服务

    该节内容主要来自于官方文档的两个小节 xff1a 1 使用rosed来编辑 2 创建ros消息的服务 先来看rosed xff1a rosed rosed命令是rosbash的一部分 xff0c 使用rosed可以直接编辑包中的一个文件 x
  • CUAV RTK初步使用体验和感受

    记录使用RTK进行无人机定位并操作的使用体验 一 RTK定位设置 使用的是CUAV制作发售的RTK xff0c 型号为C9P xff0c 目前该产品已经下架 xff0c 上新了C9PS 并不需要太多的设置 xff0c 在飞控接入RTK后 x
  • 记录一次WIN11开机在登录页面循环的问题

    记录一次由于未进行win密码设置 xff0c 导致开机后卡在登录界面无法登录进去的问题 最后完美解决了 1 背景 开机后 xff0c 显示用户登录界面 xff0c 但是和以往不同 xff0c 没有了密码输入框 xff0c 只有一个 登录 按
  • Ubuntu中增加串口的缓冲区

    增加串口缓冲区 xff0c 用于尝试解决px4 ros中显示TX溢出的问题 以下大部分代码和内容均有CHATGPT生成 xff0c 代码已经通过验证 一 通信溢出问题 PX4和ROS的通信溢出可能是由于几个原因造成的 以下是一些建议 xff
  • GRBL代码使用与修改

    下载官方grbl代码 xff0c 并进行修改使其正确 1 问题 xff1a 购买了328p单片机 xff0c 购买了grbl的底板 xff0c 但是烧录之后无法正常使用 问题发现 xff1a 引脚错误了 xff0c 官方代码中的引脚需要修改
  • ubuntu使用rc.local开机自启USB设备读写权限

    无人机飞控为ACM0 xff0c 串口USB为USB0 xff0c 使用rc为其开机自启给与权限 大部分由chagpt生成 xff0c 已验证 首先 xff0c 创建一个新的 etc rc local 文件 xff08 如果尚不存在 xff
  • Friendlycore增加inodes数量

    背景 xff1a 为Nanopim1安装了core系统 xff0c tf卡大小64G xff0c 安装后正常扩展到了整个tf卡 xff0c 但是在安装hass的docker显示磁盘空间不够 xff0c 最终发现是inode被用完了 其ino
  • UORB

    转载地址 xff1a http blog arm so armteg pixhawk 183 0503 html Pixhawk 飞控 系统是基于ARM的四轴以上飞行器的飞行控制器 xff0c 它的前身是PX4 IMU xff0c Pixh
  • rCS启动脚本分析

    转载地址 xff1a http wellmakers com p 61 401 还有一篇很重要的文章 xff0c 讲述了整个系统的大致启动过程 xff1a http blog chinaunix net uid 29786319 id 43
  • PID通俗解释

    转载地址 xff1a http blog gkong com liaochangchu 117560 ashx PID是比例 积分 微分的简称 xff0c PID控制的难点不是编程 xff0c 而是控制器的参数整定 参数整定的关键是正确地理