PX4 混控部分分析

2023-05-16

PX4的混控部分大体思路和ardupilot是一致的, 更多的PX4采用的是脚本读取的形式完成其中的读取,转换以及最后的应用.
首先从机型选择后,对应为toml文件, 如下图所示:
在这里插入图片描述
采用对应的px_generate_mixers.py来自动生成对应的文件, 该脚本提取toml中的参数, 进行生成, 脚本如下图所示
在这里插入图片描述
对应python代码中的主函数是通过解析附带的输入参数完成识别, 具体可以参看同级路径下的CMakeLists.txt完成

if __name__ == '__main__':
    import argparse
    import glob
    import os

    # Parse arguments
    parser = argparse.ArgumentParser(
        description='Convert geometry .toml files to mixer headers')
    parser.add_argument('-d', dest='dir',
                        help='directory with geometry files')
    parser.add_argument('-f', dest='files',
                        help="files to convert (use only without -d)",
                        nargs="+")
    parser.add_argument('-o', dest='outputfile',
                        help='output header file')
    parser.add_argument('--verbose', help='Print details on standard output',
                        action='store_true')
    parser.add_argument('--normalize', help='Use normalized mixers (compatibility mode)',
                        action='store_true')
    parser.add_argument('--sixdof', help='Use 6dof mixers',
                        action='store_true')
    args = parser.parse_args()

生成文件为mixer_multirotor_normalized.generated.h, 部分截图保存如下
在这里插入图片描述
随后, 在使用阶段, 全局搜索关键词 from_text, 可以看到如下内容
在这里插入图片描述
继续顺藤摸瓜, 创建MultirotorMixer的对象
在这里插入图片描述
上图中 _rotors(_config_index[]), 则对应生成的系数矩阵.
在程序的循环使用中, (只测试了对应的jmavsim仿真程序) , airmode = 0
在这里插入图片描述

最后附上mix_airmode_rp的函数内容

void MultirotorMixer::mix_airmode_rp(float roll, float pitch, float yaw, float thrust, float *outputs)
{
	// Airmode for roll and pitch, but not yaw

	// Mix without yaw
	for (unsigned i = 0; i < _rotor_count; i++) {
		outputs[i] = roll * _rotors[i].roll_scale +
			     pitch * _rotors[i].pitch_scale +
			     thrust * _rotors[i].thrust_scale;

		// Thrust will be used to unsaturate if needed
		_tmp_array[i] = _rotors[i].thrust_scale;
	}

	minimize_saturation(_tmp_array, outputs, _saturation_status);

	// Mix yaw independently
	mix_yaw(yaw, outputs);
}

Remark: 最终的PWM输出口是在px4.io中完成.

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

PX4 混控部分分析 的相关文章

  • PX4/Pixhawk---uORB深入理解和应用

    The Instructions of uORB PX4 Pixhawk 软件体系结构 uORB 主题发布 主题订阅 1 简介 1 1 PX4 Pixhawk的软件体系结构 PX4 Pixhawk的软件体系结构主要被分为四个层次 xff0c
  • PX4代码学习系列博客(6)——offboard模式位置控制代码分析

    分析offboard模式的代码需要用到以下几个模块 local position estimator mavlink mc pos control mc att control mixer 程序数据走向 mavlink 一般的offboar
  • Ubuntu下构建PX4软件

    本搭建过程基于http dev px4 io starting building html xff0c 希望大家互相交流学习 原文 xff1a Building PX4 Software xff08 构建PX4软件 xff09 PX4 ca
  • 初学PX4之环境搭建

    文章转自 xff1a http www jianshu com p 36dac548106b 前言 前段时间linux崩溃了 xff0c 桌面进去后只有背景 xff0c 折腾好久没搞定 xff0c 为了节省时间索性重装了系统 xff0c 同
  • PX4 ---- Indoor Flight

    文章目录 室内飞行ROS amp PX4Pose Data 飞机配置MAVROS 基于工训赛 VIO 飞行总结 室内飞行 ROS amp PX4 Pose Data 飞机配置 VIO 参考此处 xff0c 采用 T265 配置 相机与飞控机
  • PX4模块设计之二十三:自定义FlightTask

    PX4模块设计之二十三 xff1a 自定义FlightTask Step1 创建飞行模式文件夹Step2 创建飞行模式源代码和CMakeLists txt文件Step3 更新CMakeLists txt文件Step4 更新FlightTas
  • PX4模块设计之二十四:内部ADC模块

    PX4模块设计之二十四 xff1a 内部ADC模块 1 内部ADC模块简介2 模块入口函数2 1 主入口board adc main2 2 自定义子命令custom command 3 内部ADC模块重要函数3 1 task spawn3
  • PX4模块设计之三十:Hysteresis类

    PX4模块设计之三十 xff1a Hysteresis类 1 Hysteresis类简介2 Hysteresis类成员变量介绍3 Hysteresis类迟滞逻辑4 Hysteresis类重要方法4 1 Hysteresis bool ini
  • PX4模块设计之三十四:ControlAllocator模块

    PX4模块设计之三十四 xff1a ControlAllocator模块 1 ControlAllocator模块简介2 模块入口函数2 1 主入口control allocator main2 2 自定义子命令custom command
  • PX4模块设计之三十九:Commander模块

    PX4模块设计之三十九 xff1a Commander模块 1 Commander模块简介2 模块入口函数2 1 主入口commander main2 2 自定义子命令custom command 3 Commander模块重要函数3 1
  • PX4模块设计之四十三:icm20689模块

    PX4模块设计之四十三 xff1a icm20689模块 1 icm20689模块简介2 模块入口函数2 1 主入口icm20689 main2 2 自定义子命令custom command2 3 模块状态print status 重载 3
  • Px4源码框架结构图

    此篇blog的目的是对px4工程有一个整体认识 xff0c 对各个信号的流向有个了解 xff0c 以及控制算法采用的控制框架 PX4自动驾驶仪软件 可分为三大部分 xff1a 实时操作系统 中间件和飞行控制栈 1 NuttX实时操作系统 提
  • pixhawk px4 commander.cpp

    对于复杂的函数 xff0c 要做的就是看函数的输入是什么 来自哪里 xff0c 经过处理后得到什么 给谁用 xff0c 这样就可以把程序逻辑理清 中间的分析就是看函数如何处理的 span class hljs keyword extern
  • px4下载指定版本的固件、git用法

    https hub fastgit org PX4 PX4 Autopilot git describe tag 查看当前版本号 git tag l 查看所有版本 xff0c 也就是打个tag git checkout v1 9 1 跳转到
  • PX4飞控之自主返航(RTL)控制逻辑

    本文基于PX4飞控1 5 5版本 xff0c 分析导航模块中自护返航模式的控制逻辑和算法 自主返航模式和导航中的其他模式一样 xff0c 在Navigator main函数中一旦触发case vehicle status s NAVIGAT
  • PX4 OffBoard Control

    终于还是走上了这一步 xff0c 对飞控下手 xff0c 可以说是一张白纸了 记录一下学习的过程方便以后的查阅 目录 一 ubuntu18 04配置px4编译环境及mavros环境 二 PX4的OffBoard控制 1 搭建功能包 2 编写
  • PX4项目学习::(七)飞控栈:commander

    PX4的飞行控制程序通过模块来实现 xff0c 与飞控相关的模块主要有commander xff0c navigator xff0c pos control xff0c att control这几个 xff0c 分别可以在src modul
  • PX4项目学习::(五)模块代码启动流程

    54条消息 PX4 模块代码启动流程 zhao23333的博客 CSDN博客
  • PX4通过参数脚本给飞控导入参数

    PX4通过参数脚本给飞控导入参数 先找一架正常能飞的无人机连接地面站 在参数页面右上角点击工具 gt 保存到文件 保存的时候文件名注明参数的相关信息 然后将需要加载参数的无人机连接至地面站 xff0c 注意需要加载参数的无人机必须和保存的参
  • 大神浅谈无人机飞控软件设计 系统性总结

    写在前面 深感自己对飞控软件 算法的知识点过于杂乱 很久没有进行系统的总结了 因此决定写几篇文章记录一些飞控开发过程的知识点 主要是针对一些软件 算法部分进行讨论 如内容有错误 欢迎指出 1 飞控软件的基本模块 无人机能够飞行主要是依靠传感

随机推荐

  • ArduPilot姿态环控制-----传感器初始化

    参考链接 xff1a https blog csdn net lixiaoweimashixiao article details 80540295 首先我们假定从void AP Vehicle setup 开始 xff0c 这里是飞控所有
  • ArduPilot飞行前检查——PreArm解析

    ArduPilot飞行前检查 主要包括两个部分 1 初始化中遥控器输入检查 xff1b 2 1Hz解锁前检查 附 xff1a 显示地面站信息 参考文章 xff1a Ardupilot Pre Arm安全检查程序分析 1 初始化中遥控器输入检
  • ROS_PX4_gazebo学习记录

    在官方程序上 xff08 PX4 wiki上为offboard起飞到2m高度 xff09 进行更改 xff0c 实现首先起飞到固定点 xff08 x 61 1 y 61 2 z 61 5 然后按照给定角度飞行 补充 xff1a 最终实现效果
  • Rospy初次使用记录-定点飞行

    由于接触到pytorch xff0c 所以用python完成与ROS的通信 xff0c 下面例子为从程序中摘出来的一部分 xff0c 用到了ROS消息的订阅与发布 xff0c 服务的通信 xff0c 可以作为参考使用 xff1a span
  • 四旋翼飞行器数学模型

    最近接触到四旋翼无人机的位置控制方法 xff0c 就又了解了一下四旋翼飞机的数学模型 xff0c 现总结如下 xff1a 位置环 xff08 均定义在惯性坐标系下 xff09 P
  • 基于ROS与optitrack的四旋翼飞机开发流程

    本文将一些注意点记录下来 xff0c 适合于开发调试 xff1a 目前只是分段调试通了 xff0c 带后续联合开发的时候在来补充还有没有什么注意点 xff08 过程也算麻烦 xff0c 也算不麻烦 xff09 xff1b xff32 xff
  • ROS_调试(三) 打印输出

    ROS INFO 采用类似C语言的形式 ROS DEBUG ROS DEBUG STREAM 采用类似C 43 43 语言的形式打印 ROS DEBUG STREAM NAMED ROS DEBUG STREAM THROTTLE NAME
  • px4调试bug--添加mavlink_log_info信息

    写在前面的话 有一阵子没有看px4的代码了 由于项目和论文的需要 又要接触这个 其中又遇到一些新的问题 找到了一些新的解决方法 故在此记录一下 总是在几种飞控代码之间跳来跳去 没有认真研究一个 有点遗憾 PX4的代码调试还没有找到什么好的方
  • APM,PX4之开源协议

    APM代码设计的是GPLv3协议 xff0c PX4代码采用的是BSD协议 从上图可以看出 xff0c ardupilot的代码是允许别人修改 xff0c 但是修改之后必须开源且采用相同的许可证书 而PX4代码则是允许别人修改 xff0c
  • C语言实现mavlink库与px4通信仿真

    参照网址 http mavlink io en mavgen c 首先从github上下载对应的C uart interface example 对应的github仓库网址为https github com mavlink c uart i
  • RK3308--8声道改成双声道+录音增益

    改为双声道 修改dts文件 相关路径 xff1a Y hxy RK3308 sdk 1 5 kernel arch arm64 boot dts rockchipY hxy RK3308 sdk 1 5 kernel Documentati
  • Flightmare install 安装指南

    flightmare 是ETH推出的一个用于gazebo仿真 xff0c 强化学习训练的平台 xff0c 并在github上公开了其源代码 本文主要记录在配置环境过程中出现的问题 github网址链接 https github com uz
  • matlab发送mavlink消息

    主要介绍了通过matlab脚本实现UDP发送mavlink消息 xff0c 为后面matlab计算 xff0c 与Optitrack联合调试 xff0c 控制无人机做准备 示例演示效果链接为 matlab通过UDP协议发送mavlink消息
  • apm-ros-optitrack初步尝试

    本文记录采用ArduPilot固件 xff0c 室内optitrack环境下飞行实现中遇到的一些问题 在apm mavros仿真中 xff0c 总是出现mavros state 显示 not connected 在实际的操作中 xff0c
  • APM代码调试知识点汇总

    由于项目的需要 xff0c 对ardupilot的源码进行二次开发 本文记录在二次开发中遇到的问题以及注意事项 xff1a CUAV V5 实测 apm 串口 xff0c 对于姿态数据的发送和接收在200Hz的时候 xff0c 是没有问题的
  • ardupilot之mavlink消息--从飞控发出--单向

    飞控采用mavlink消息进行数据的传输 普遍说法是 xff0c 现有的mavlink消息几乎已经涵盖了所有你的能想象到的内容 xff0c 完全可以覆盖多处需求 无奈科研总是要定义一些新鲜玩意 xff0c 所以总是有无法完全满足需求 xff
  • ardupilot之mavlink消息--飞控接收--单向

    由于项目需要 xff0c 完成一个测试demo 本次从dronekit中发送mavlink消息给飞控 xff0c 飞控接收发来的wp信息 xff0c 然后进行修改供程序使用 首先祭出测试视频 dronekit arudpilot test
  • ArduPilot 添加自定义调节参数

    实际变成操作中 xff0c 需要对ardupilot代码进行修改并添加对应的调试参数 xff0c 这样 xff0c 可以通过地面站很方便的进行修改参数 目前修改代码在parameter h中的G2类 xff0c 表示为全局的参数列表 参数类
  • Python_mavros_manual_contoller

    利用python完成mavros与PX4的通信工程 xff0c 同时也完成了对应的PX4中对应消息代码的调试查看 span class token keyword from span future span class token keyw
  • PX4 混控部分分析

    PX4的混控部分大体思路和ardupilot是一致的 更多的PX4采用的是脚本读取的形式完成其中的读取 转换以及最后的应用 首先从机型选择后 对应为toml文件 如下图所示 采用对应的px generate mixers py来自动生成对应