Makefile介绍

2023-05-16

概述

什么是makefile?或许很多Windows的程序员都不知道这个东西,因为那些Windows的集成开发环境(integrated development environment,IDE)都为你做了这个工作,但作为一个好的和专业的程序员,makefile还是要懂。这就好像现在有这么多的HTML编辑器,但如果你想成为一个专业人士,你还是要了解HTML的标签的含义。特别在Unix下的软件编译,你就不能不自己写makefile了,会不会写makefile,从一个侧面说明了一个人是否具备完成大型工程的能力

因为,makefile关系到了整个工程的编译规则一个工程中的源文件不计其数,并且按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为makefile就像一个Shell脚本一样,其中也可以执行操作系统的命令

makefile带来的好处就是——“自动化编译”,一旦写好,只需要一个make命令,整个工程完全自动编译,极大的提高了软件开发的效率。 make是一个命令工具,是一个解释makefile中指令的命令工具,一般来说,大多数的IDE都有这个命令,比如:Delphi的make,Visual C++的nmake,Linux下GNU的make。可见,makefile都成为了一种在工程方面的编译方法。

makefile介绍

make命令执行时,需要一个makefile文件,以告诉make命令需要怎么样的去编译和链接程序

首先,我们用一个示例来说明makefile的书写规则,以便给大家一个感性认识。这个示例来源于gnu 的make使用手册,在这个示例中,我们的工程有8个c文件,和3个头文件,我们要写一个makefile来告诉make命令如何编译和链接这几个文件。我们的规则是:

  1. 如果这个工程没有编译过,那么我们的所有c文件都要编译并被链接。
  2. 如果这个工程的某几个c文件被修改,那么我们只编译被修改的c文件,并链接目标程序。
  3. 如果这个工程的头文件被改变了,那么我们需要编译引用了这几个头文件的c文件,并链接目标程序。

只要我们的makefile写得够好,所有的这一切,我们只用一个make命令就可以完成,make命令会自动智能地根据当前的文件修改的情况来确定哪些文件需要重编译,从而自动编译所需要的文件和链接目标程序

makefile的基本规则

在讲述这个makefile之前,还是让我们先来粗略地看一看makefile的规则:

target .. : prerequisites ..
[TAB]command
    ...
    ...

 target

可以是一个object file(目标文件),也可以是一个执行文件,还可以是一个标签(label),即make 执行的动作名称。对于标签这种特性,在后续的“伪目标”章节中会有叙述。

prerequisites

生成该target所依赖的文件和/或target

command

该target要执行的命令(可以是任意的shell命令或者是可以shell下执行的程序),可以有多个命令行,每个命令行都以TAB 字符开始,[Tab]字符告诉 make 此行是一个命令行;

这是一个文件的依赖关系,也就是说,target这一个或多个的目标文件依赖于prerequisites中的文件,其生成规则定义在command中。说白一点就是说:


prerequisites中如果有一个以上的文件更新的话,command所定义的命令就会被执行。  

 这就是makefile的规则,也就是makefile中最核心的内容。

一个示例

正如前面所说,如果一个工程有3个头文件和8个c文件,为了完成前面所述的那三个规则,我们的makefile 应该是下面的这个样子的:

edit : main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o
    gcc -o edit main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o

main.o : main.c defs.h
    gcc -c main.c
kbd.o : kbd.c defs.h command.h
    gcc -c kbd.c
command.o : command.c defs.h command.h
    gcc -c command.c
display.o : display.c defs.h buffer.h
    gcc -c display.c
insert.o : insert.c defs.h buffer.h
    gcc -c insert.c
search.o : search.c defs.h buffer.h
    gcc -c search.c
files.o : files.c defs.h buffer.h command.h
    gcc -c files.c
utils.o : utils.c defs.h
    gcc -c utils.c
clean :
    rm edit main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o

 反斜杠( \ )是换行符的意思,可以将较长的一行拆解为多行,这样比较便于makefile的阅读;但是注意反斜杠之后不能有空格!!这是常见的错误!!

我们可以把这个内容保存在名字为“makefile”或“Makefile”的文件中,然后在该目录下直接输入命令 make 就可以生成执行文件edit。如果要删除执行文件和所有的中间目标文件,那么,只要简单地执行一下 make clean 就可以了。

在这个makefile中,目标文件(target)包含:执行文件edit和中间目标文件( *.o ),依赖文件(prerequisites)就是冒号后面的那些 .c 文件和 .h 文件。每一个 .o 文件都有一组依赖文件,而这些 .o 文件又是执行文件 edit 的依赖文件。依赖关系的实质就是说明了目标文件是由哪些文件生成的,换言之,目标文件是哪些文件更新的。 

在定义好依赖关系后,后续的那一行定义了如何生成目标文件的操作系统命令,一定要以一个 Tab 键作为开头。记住,make并不管命令是怎么工作的,他只管执行所定义的命令。make会比较targets文件和prerequisites文件的修改日期,如果prerequisites文件的日期要比targets文件的日期要新,或者target不存在的话,那么,make就会执行后续定义的命令。

 这里要说明一点的是, clean 不是一个文件它只不过是一个动作名字,有点像c语言中的label一样,其冒号后什么也没有,那么,make就不会自动去找它的依赖性,也就不会自动执行其后所定义的命令。要执行其后的命令,就要在make命令后明显得指出这个label的名字。这样的方法非常有用,我们可以在一个makefile中定义不用的编译或是和编译无关的命令,比如程序的打包,程序的备份,等等。

make是如何工作的

在默认的方式下,也就是我们只输入 make 命令。那么,

  1. make会在当前目录下找名字叫“Makefile”或“makefile”的文件。
  2. 如果找到,它会找文件中的第一个目标文件(target),在上面的例子中,他会找到“edit”这个文件,并把这个文件作为最终的目标文件。
  3. 如果edit文件不存在,或是edit所依赖的后面的 .o 文件的文件修改时间要比 edit 这个文件新,那么,他就会执行后面所定义的命令来生成 edit 这个文件。
  4. 如果 edit 所依赖的 .o 文件也不存在,那么make会在当前文件中找目标为 .o 文件的依赖性,如果找到则再根据那一个规则生成 .o 文件。(这有点像一个堆栈的过程)
  5. 当然,你的C文件和H文件是存在的啦,于是make会生成 .o 文件,然后再用 .o 文件生成make的终极任务,也就是执行文件 edit 了。

这就是整个make的依赖性,make会一层又一层地去找文件的依赖关系,直到最终编译出第一个目标文件。在找寻的过程中,如果出现错误,比如最后被依赖的文件找不到,那么make就会直接退出,并报错,而对于所定义的命令的错误,或是编译不成功,make根本不理。make只管文件的依赖性,即,如果在我找了依赖关系之后,冒号后面的文件还是不在,那么对不起,我就不工作啦。

通过上述分析,我们知道,像clean这种,没有被第一个目标文件直接或间接关联,那么它后面所定义的命令将不会被自动执行,不过,我们可以显示要make执行。即命令—— make clean ,以此来清除所有的目标文件,以便重编译

于是在我们编程中,如果这个工程已被编译过了,当我们修改了其中一个源文件,比如 file.c ,那么根据我们的依赖性,我们的目标 file.o 会被重编译(也就是在这个依性关系后面所定义的命令),于是 file.o 的文件也是最新的啦,于是 file.o 的文件修改时间要比 edit 要新,所以 edit 也会被重新链接了(详见 edit 目标文件后定义的命令)。

而如果我们改变了 command.h ,那么, kdb.o 、 command.o 和 files.o 都会被重编译,并且, edit 会被重链接。

makefile中使用变量

在上面的例子中,先让我们看看edit的规则:

edit : main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o
    gcc -o edit main.o kbd.o command.o display.o \
        insert.o search.o files.o utils.o

我们可以看到 .o 文件的字符串被重复了两次,如果我们的工程需要加入一个新的 .o 文件,那么我们需要在两个地方加(应该是三个地方,还有一个地方在clean中)。当然,我们的makefile并不复杂,所以在两个地方加也不累,但如果makefile变得复杂,那么我们就有可能会忘掉一个需要加入的地方,而导致编译失败。所以,为了makefile的易维护,在makefile中我们可以使用变量。makefile的变量也就是一个字符串,理解成C语言中的宏可能会更好

比如,我们声明一个变量,叫 objects , OBJECTS , objs , OBJS , obj 或是 OBJ ,反正不管什么啦,只要能够表示obj文件就行了。我们在makefile一开始就这样定义: 

objects = main.o kbd.o command.o display.o \
     insert.o search.o files.o utils.o

于是,我们就可以很方便地在我们的makefile中以 $(objects) 的方式来使用这个变量了,于是我们的改良版makefile就变成下面这个样子:

objects = main.o kbd.o command.o display.o \
    insert.o search.o files.o utils.o

edit : $(objects)
    cc -o edit $(objects)
main.o : main.c defs.h
    cc -c main.c
kbd.o : kbd.c defs.h command.h
    cc -c kbd.c
command.o : command.c defs.h command.h
    cc -c command.c
display.o : display.c defs.h buffer.h
    cc -c display.c
insert.o : insert.c defs.h buffer.h
    cc -c insert.c
search.o : search.c defs.h buffer.h
    cc -c search.c
files.o : files.c defs.h buffer.h command.h
    cc -c files.c
utils.o : utils.c defs.h
    cc -c utils.c
clean :
    rm edit $(objects)

于是如果有新的 .o 文件加入,我们只需简单地修改一下 objects 变量就可以了。

让make自动推导

GNU的make很强大,它可以自动推导文件以及文件依赖关系后面的命令,于是我们就没必要去在每一个 .o 文件后都写上类似的命令,因为,我们的make会自动识别,并自己推导命令。

只要make看到一个 .o 文件,它就会自动的把 .c 文件加在依赖关系中,如果make找到一个 whatever.o ,那么 whatever.c 就会是 whatever.o 的依赖文件。并且 gcc -c whatever.c 也会被推导出来,于是,我们的makefile再也不用写得这么复杂。我们的新makefile又出炉了:

objects = main.o kbd.o command.o display.o \
    insert.o search.o files.o utils.o

edit : $(objects)
    cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

.PHONY : clean
clean :
    rm edit $(objects)

这种方法,也就是make的“隐晦规则”。上面文件内容中, .PHONY 表示 clean 是个伪目标文件

另类风格的makefiles

既然我们的make可以自动推导命令,那么我看到那堆 .o 和 .h 的依赖就有点不爽,那么多的重复的 .h ,能不能把其收拢起来,好吧,没有问题,这个对于make来说很容易,谁叫它提供了自动推导命令和文件的功能呢?来看看最新风格的makefile吧:

    insert.o search.o files.o utils.o

edit : $(objects)
    cc -o edit $(objects)

$(objects) : defs.h
kbd.o command.o files.o : command.h #command.h 是三个目标文件共同的依赖文件
display.o insert.o search.o files.o : buffer.h #buffer.h 是三个目标文件共同的依赖文件

.PHONY : clean
clean :
    rm edit $(objects)

 这种风格,让我们的makefile变得很简单,但我们的文件依赖关系就显得有点凌乱了。鱼和熊掌不可兼得。还看你的喜好了。我是不喜欢这种风格的,一是文件的依赖关系看不清楚,二是如果文件一多,要加入几个新的 .o 文件,那就理不清楚了。

清空目标文件的规则

每个Makefile中都应该写一个清空目标文件( .o 和执行文件)的规则,这不仅便于重编译,也很利于保持文件的清洁。这是一个“修养”。一般的风格都是:

clean:
    rm edit $(objects)

 更为稳健的做法是:

.PHONY : clean
clean :
    -rm edit $(objects)

前面说过, .PHONY 表示 clean 是一个“伪目标”。而在 rm 命令前面加了一个小减号的意思就是,也许某些文件出现问题,但不要管,继续做后面的事。当然, clean 的规则不要放在文件的开头,不然,这就会变成make的默认目标,相信谁也不愿意这样。不成文的规矩是——“clean从来都是放在文件的最后"。

Makefile里有什么?

Makefile里主要包含了五个东西:显式规则、隐晦规则、变量定义、文件指示和注释

  1. 显式规则。显式规则说明了如何生成一个或多个目标文件。这是由Makefile的书写者明显指出要生成的文件、文件的依赖文件和生成的命令。
  2. 隐晦规则。由于我们的make有自动推导的功能,所以隐晦的规则可以让我们比较简略地书写 Makefile,这是由make所支持的。
  3. 变量的定义。在Makefile中我们要定义一系列的变量,变量一般都是字符串,这个有点像你C语言中的宏,当Makefile被执行时,其中的变量都会被扩展到相应的引用位置上。
  4. 文件指示。其包括了三个部分,一个是在一个Makefile中引用另一个Makefile,就像C语言中的include一样;另一个是指根据某些情况指定Makefile中的有效部分,就像C语言中的预编译#if一样;还有就是定义一个多行的命令。有关这一部分的内容,我会在后续的部分中讲述。
  5. 注释。Makefile中只有行注释,和UNIX的Shell脚本一样,其注释是用 # 字符,这个就像C/C++中的 // 一样。如果你要在你的Makefile中使用 # 字符,可以用反斜杠进行转义,如: \# 。

最后,还值得一提的是,在Makefile中的命令,必须要以 Tab 键开始

Makefile的文件名

默认的情况下,make命令会在当前目录下按顺序找寻文件名为“GNUmakefile”、“makefile”、“Makefile”的文件,找到了解释这个文件。在这三个文件名中,最好使用“Makefile”这个文件名,因为,这个文件名第一个字符为大写,这样有一种显目的感觉。最好不要用“GNUmakefile”,这个文件是GNU的make识别的。有另外一些make只对全小写的“makefile”文件名敏感,但是基本上来说,大多数的make都支持“makefile”和“Makefile”这两种默认文件名。

当然,你可以使用别的文件名来书写Makefile,比如:“Make.Linux”,“Make.Solaris”,“Make.AIX”等,如果要指定特定的Makefile,你可以使用make的 -f 和 --file 参数,如: make -f Make.Linux 或 make --file Make.AIX 。

引用其它的Makefile

在Makefile使用 include 关键字可以把别的Makefile包含进来,这很像C语言的 #include ,被包含的文件会原模原样的放在当前文件的包含位置; include 操作符会告诉 make 暂停读取当前的makefile ,而转去读取 include 指定的文件,完成以后在继续当前 makefile 的读取;

 include 的语法是:

include  <filename>

filename 可以是当前操作系统Shell的文件模式(可以包含路径和通配符)。

在 include 前面可以有一些空字符,但是绝不能是 Tab 键开始。 include 和 <filename> 可以用一个或多个空格隔开。举个例子,你有这样几个Makefile: a.mk 、 b.mk 、 c.mk ,还有一个文件叫 foo.make ,以及一个变量 $(bar) ,其包含了 e.mk 和 f.mk ,那么,下面的语句:

include foo.make  *.mk  $(bar)

等价于:

include foo.make a.mk b.mk c.mk e.mk f.mk

make命令开始时,会找寻 include 所指出的其它Makefile,并把其内容安置在当前的位置。就好像C/C++的 #include 指令一样。如果文件都没有指定绝对路径或是相对路径的话,make会在当前目录下首先寻找,如果当前目录下没有找到,那么,make还会在下面的几个目录下找:

  1. 如果make执行时,有 -I 或 --include-dir 参数,那么make就会在这个参数所指定的目录下去寻找。
  2. 如果目录 <prefix>/include (一般是: /usr/local/bin 或 /usr/include )存在的话,make也会去找。

如果有文件没有找到的话,make会生成一条警告信息,但不会马上出现致命错误。它会继续载入其它的文件,一旦完成makefile的读取,make会再重试这些没有找到,或是不能读取的文件,如果还是不行,make才会出现一条致命信息。如果你想让make不理那些无法读取的文件,而继续执行,你可以在include前加一个减号“-”。如:

-include <filename>

其表示,无论include过程中出现什么错误,都不要报错继续执行。和其它版本make兼容的相关命令是sinclude,其作用和这一个是一样的。

环境变量MAKEFILES

如果你的当前环境中定义了环境变量 MAKEFILES ,那么,make会把这个变量中的值做一个类似于 include 的动作。这个变量中的值是其它的Makefile,用空格分隔。只是,它和 include 不同的是,从这个环境变量中引入的Makefile的“目标”不会起作用,如果环境变量中定义的文件发现错误,make也会不理。

但是在这里我还是建议不要使用这个环境变量,因为只要这个变量一被定义,那么当你使用make时,所有的Makefile都会受到它的影响,这绝不是你想看到的。在这里提这个事,只是为了告诉大家,也许有时候你的Makefile出现了怪事,那么你可以看看当前环境中有没有定义这个变量。

make的工作方式

GNU的make工作时的执行步骤如下:(想来其它的make也是类似)

  1. 读入所有的Makefile。
  2. 读入被include的其它Makefile。
  3. 初始化文件中的变量。
  4. 推导隐晦规则,并分析所有规则。
  5. 为所有的目标文件创建依赖关系链。
  6. 根据依赖关系,决定哪些目标要重新生成。
  7. 执行生成命令。

1-5步为第一个阶段,6-7为第二个阶段。第一个阶段中,如果定义的变量被使用了,那么,make会把其展开在使用的位置。但make并不会完全马上展开,make使用的是拖延战术,如果变量出现在依赖关系的规则中,那么仅当这条依赖被决定要使用了,变量才会在其内部展开

当然,这个工作方式你不一定要清楚,但是知道这个方式你也会对make更为熟悉。有了这个基础,后续部分也就容易看懂了。

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

Makefile介绍 的相关文章

  • Eclipse CDT生成的Makefile在哪里?

    我已经使用 Eclipse helios CDT 构建了一个 hello world C 项目 它编译得很好 但我想看一下生成的 Makefile CDT 我在项目文件夹 调试 发布文件夹或 src 文件夹中找不到它 我在哪里可以找到这个
  • C:创建静态库并使用 Makefile 进行链接

    我在尝试着了解静态和共享库 http randu org tutorials c libraries php 我想执行以下操作来创建一个单独编译和链接的 makefile 以便创建和链接静态库 形成最终的静态可执行文件 我有以下 Makef
  • 如何生成缺失的 #include 文件的列表

    背景 我正在开发一个大型 C 项目 其中包含多个可执行文件和库输出 以及一组工作 make 文件 即假设您拥有整个代码库 您可以输入 make 它将构建所有库和可执行文件 我的问题是我必须部分编译该项目 并且只需链接已为项目其他部分编译的库
  • 如何在 Makefile 中将带引号的字符串转换为普通字符串?

    我不确定我是否正确描述了这个问题 但目前我正在通过以下方式解决这个问题 QUOTEDSTR hello world NORMALSTR shell echo QUOTEDSTR 是否有一种更内置的方法可以让 make 在不调用 shell
  • Linux 内核模块 Makefile 不能包含相对路径

    我正在尝试构建 Linux 内核模块 KBUILD EXTRA SYMBOLS Module symvers KBUILD EXTRA SYMBOLS dir0 Module symvers KDIR kernel linux 4 9 IN
  • mingw32-make 尝试创建子文件夹 .lib 为非法名称

    我正在尝试编译一个需要 freetype 库的项目 所以我正在弄清楚如何将 freetype 安装到 mingw32 更安全的方法是编译它 无论如何 问题是编译 freetype 2 4 11 我进入了msys中提供的bash 我做到了 c
  • makefile 中的路径不起作用

    我正在运行以下命令makefile哪些需要改变dir到特定目标并在那里运行npm install 问题是我能够在输出中看到它将目录 项目 应用程序 打印到正确的目录 但安装 npm install 在上层 项目 上运行 为什么 例如 当我运
  • 如何在 ubuntu 20 中安装旧版本的 gcc -3 或 gcc-4

    我正在尝试安装旧版本的 gcc 4enter code here对于我的ubuntu创建构建目录 mkdir gcc build cd gcc build 下载源文件 wgethttp www netgull com gcc release
  • 即使没有任何更改,Makefile 也始终不是最新的

    我有一个包含两个文件夹的目录 src and binmakefile 位于根目录 即使没有更改 此 makefile 也会持续编译 不是最新的 我在这个 makefile 中遗漏了什么吗 all make a b a src a cpp g
  • 如何在 GNU Make 模式规则中包含路径前缀

    考虑以下 foo bar echo lt gt 假设我们有一个文件1 bar 执行的命令很简单echo 1 bar gt 1 foo 然而 当 包含一个路径 而不仅仅是一个文件名 它开始变得挑剔 我的问题是我想在前面添加另一条路径 bar
  • 将文件夹中结构化的预构建文件集添加到 android out 文件夹

    我为arm编译了glibc 这与Android glibc或bionic C不同 因为我编译的glibc环境将有助于提供更多api 现在我可以在 Android 运行时将 glibc 环境复制到 system 文件夹中 并且在执行 chro
  • 在 PATH 中找不到程序“make”

    我在 Eclipse 中遇到 程序 make 未在 PATH 中找到 错误 我检查了路径变量 C cygwin bin JAVA HOME bin ANT HOME bin ANDROID SDK tools ANDROID SDK pla
  • 是否可以将 CFLAGS 设置为 Linux 内核模块 Makefile?

    例如 常见设备模块的Makefile obj m jc o default MAKE C lib modules shell uname r build M shell pwd modules clean MAKE C lib module
  • /usr/sbin/install 到底有什么作用?

    我正在尝试安装discount https github com Orc discount on my VPS http no de它基于Solaris 设置一些环境变量后编译效果很好 但是安装失败 https gist github co
  • 使用 GNU make “从源代码树中”构建 C 程序

    我想使用 GNU make 工具为我的微控制器构建一个 C 项目 我想以一种干净的方式来做这件事 这样我的源代码在构建后就不会被目标文件和其他东西弄乱 想象一下我有一个名为 myProject 的项目文件夹 其中有两个文件夹 myProje
  • Makefile 和通配符

    好吧 这是我当前的 makefile 设置 有一些文件名为public01 c public02 c等等 我正在尝试使用以下方法为每个人制作目标文件public o带有通配符的标签 public o public c hashtable h
  • bash 函数保留制表符补全

    我把函数 make color make 1 ccze A in bashrc获得彩色的 make 输出 他的作品很好 但是make用于选择目标的制表符补全功能丢失 有什么方法可以保留函数中命令的制表符完成 或者我可以做其他事情来实现制表符
  • 在 Mac OS X 上的 Makefile 中设置 PATH(但它适用于 Linux)

    我可以在 Linux 上的 Makefile 中设置 PATH 但不能在 Mac OS X 上设置 在 OS X 中 可以设置 PATH 但不会使用 这是一个演示 在带有 bash 4 1 2 1 release 和 GNU Make 3
  • 构建 makefile 依赖/继承树

    如果我解释得不好或者问了一些明显的问题 我很抱歉 但我是 Linux 内核的新手 而且有点深入 我们有一个嵌入式 Linux 系统 它附带一个 文档非常糟糕的 SDK 其中包含数百个文件夹stuff 大多数文件夹包含rules make m
  • MinGW Make 抛出“系统找不到指定的路径。”错误

    我正在尝试在 Windows 7 上使用 cmake 生成一个 c 项目 在实际创建项目之前 cmake 会对您的工具链进行快速测试 我正在使用 MinGW 这就是我的问题所在 Cmake 触发 make 构建 最终失败并返回 系统找不到指

随机推荐

  • Kubernetes安装部署

    Kubernetes安装部署 准备三台虚拟机 master node1 node2 系统CentOS7 9 内存4G 处理器2 硬盘50G 配置hosts解析 192 168 163 150 master 192 168 163 152 n
  • ubuntu上位机与单片机TCP通信的调试(供回忆)

    xff08 1 xff09 上位机TCP客户端通信连接失败 1 xff09 ping IP地址 2 xff09 telnet IP 端口号 https blog csdn net l370398095 article details 705
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|ORBVocabulary|1-17】

    ORBVocabulary的类是ORB SLAM2中用于描述词典的数据结构 在ORB SLAM2中 xff0c 描述词典用于将特征描述符与地图点进行关联和匹配 xff0c 从而实现快速和鲁棒的数据关联 在这个代码中 xff0c ORBVoc
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|ORBextractor|1-19】

    ORBextractor的类 xff0c 是ORB SLAM2系统中用于提取ORB特征的关键部分 在视觉SLAM xff08 Simultaneous Localization and Mapping xff09 系统中 xff0c 特征提
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|ORBmatcher|1-20】

    特征匹配是关键任务之一 xff0c 因为它们用于找到不同帧之间的特征匹配 xff0c 从而实现跟踪 地图构建和优化等任务 ORBmatcher类的主要功能如下 xff1a 在不同场景下进行特征点匹配 xff0c 例如初始化 跟踪 重定位 回
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|Optimizer|1-21】

    优化是关键任务之一 xff0c 因为它们用于提高位姿估计 地图点位置和地图一致性的精度 Optimizer类的主要功能如下 xff1a 在局部和全局范围内进行Bundle Adjustment xff08 BA xff09 优化 对当前帧进
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|PnPsolver|1-22】

    它实现了一种名为EPnP xff08 Efficient Perspective n Point xff09 的算法 xff0c 该算法能够从2D 3D点对之间的关系中估计相机的位姿 PnPsolver类的主要功能如下 xff1a 通过使用
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|Sim3Solver|1-23】

    Sim3Solver类负责估计两个关键帧之间的相似性变换 Sim 3 该类接受两个关键帧和它们之间的一组匹配的地图点作为输入 然后使用RANSAC方法迭代地优化Sim 3 变换 估计的变换包括旋转 平移和尺度信息 以下是这个头文件中使用的C
  • 驼峰命名法

    简介 xff1a 驼峰式命名法又叫骆驼式命名法 xff0c 是编程时的一种命名规则 xff0c 指混合使用大小写字母来构成变量和函数的名字 意义 xff1a 多人做项目时 xff0c 若命名格式统一 xff0c 可以方便不同成员之间的代码交
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|System|1-24】

    包含所需库和其他类的头文件 定义命名空间ORB SLAM2 定义System类 它是整个ORB SLAM2算法的核心组件 它将各个子模块 如追踪 局部建图 回环检测等 组合在一起 并提供了处理单目 双目和RGB D图像的方法 System类
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking|1-25】

    在C 43 43 语法方面 xff0c 这段代码包括以下部分 xff1a 头文件包含 xff08 include xff09 xff1a 使用 include指令引入必要的头文件 xff0c 这些头文件提供了各种所需的类和函数定义 命名空间
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking|1-25】

    在Tracking类中 有一些成员变量和成员函数 下面是它们的简要概述 成员变量 System mpSystem 指向System类对象的指针 用于访问和操作ORB SLAM2系统 FrameDrawer mpFrameDrawer 指向F
  • 【逐函数详细讲解ORB_SLAM2算法和C++代码|Viewer|1-26】

    Viewer类的主要目的是实现ORB SLAM2算法的可视化部分 帮助用户更好地理解算法的运行过程和结果 为此 Viewer类与其他类 如System FrameDrawer MapDrawer和Tracking 协同工作 根据摄像机的帧率
  • #include<iostream>

    include lt iostream gt 是C 43 43 程序中非常常见的一条预处理指令 xff0c 它包含了iostream库 iostream库提供了C 43 43 程序中用于处理标准输入 输出流的基本功能 这个库中定义了一些重要
  • #include<algorithm>

    include lt algorithm gt 是C 43 43 中一个常用的预处理指令 xff0c 它包含了algorithm库 这个库提供了大量用于操作序列 xff08 例如数组 向量 列表等容器 xff09 的通用算法 xff0c 这
  • #include<fstream>

    include lt fstream gt 是C 43 43 程序中常用的预处理指令 xff0c 它包含了fstream库 这个库提供了用于处理文件输入 输出的类 fstream库主要包括以下几个类 xff1a std ifstream x
  • #include<chrono>

    include lt chrono gt 是C 43 43 标准库中用于处理时间和持续时间的头文件 chrono库提供了一系列用于表示时间点 时间段和时钟的类和函数 以下是chrono库中一些常用接口和用法 xff1a 持续时间 xff08
  • 【#include<opencv2/core/core.hpp>】

    include lt opencv2 core core hpp gt 是OpenCV库中的一个核心模块头文件 xff0c 它包含了许多用于处理图像和计算的基本数据结构 函数和类 以下是opencv2 core core hpp中的一些常用
  • 逐函数详细讲解ORB_SLAM2算法和C++语法|LoadImages|2-1

    完整可执行代码 https github com xiaoqiuslam orb2 视频讲解 逐函数讲解ORB SLAM2源码 xff5c 1 加载Euroc数据集图像 逐函数讲解ORB SLAM2源码 1 加载Euroc数据集图像 逐函数
  • Makefile介绍

    概述 什么是makefile xff1f 或许很多Windows的程序员都不知道这个东西 xff0c 因为那些Windows的集成开发环境 xff08 integrated development environment xff0c IDE