毕设--基于51单片机的温度报警器设计

2023-05-16

目录

    • 1、简介
    • 2、设计要求与方案论证
      • 2.1、设计要求
        • 2.2、系统基本方案选择和论证
          • 2.2.1、单片机芯片的选择方案和论证
          • 2.2.2、温度传感器设计方案论证
        • 2.3、电路设计最终方案决定
      • 3、硬件设计介绍
        • 3.1、STC89C51介绍
        • 3.1.1、STC89C51主要功能及PDIP封装
        • 3.1.2、STC89C51引脚介绍
        • 3.1.3、单片机最小系统:
        • 3.2、DS18B20传感器介绍
      • 4、系统程序设计流程图
        • 4.1、主程序软件设计
        • 4.2、温度采集的软件设计
        • 4.3、温度采集算法软件设计
        • 4.4、温度转换命令子程序软件设计
        • 4.5、DS18B20的程序流程图
      • 5、Proteus 仿真图
      • 6、程序代码
      • 7、资源获取

注:本设计资源可在微信公众号:“Kevin的学习站” 中获取!

1、简介

主要实现:实时温度测量及显示,超出温度范围声光报警,上下限温度可通过按键设定等功能。
本数字温度报警器是基于51单片机及温度传感器DS18B20来设计的,温度测量范围0到99.9摄氏度,精度为0.1摄氏度,可见测量温度的范围广,精度高的特点。可设置上下限报警温度,默认上限报警温度为38℃、默认下限报警温度为5℃(通过程序可以更改默认上下限值)。报警值可设置范围:最低上限报警值等于当前下限报警值,最高下限报警值等于当前上限报警值。将下限报警值调为0时为关闭下限报警功能。

2、设计要求与方案论证

2.1、设计要求

基本范围0℃-99℃ ;
精度误差小于 0.1℃ ;
数码管直读显示;
扩展功能:可以任意设定温度的上下限报警功能。

2.2、系统基本方案选择和论证

2.2.1、单片机芯片的选择方案和论证

由于单片机具有以下的很多优点,被我们选定为制作该作品的首选芯片
单片机特点:
(1)高集成度,体积小,高可靠性
单片机将各功能部件集成在一块晶体芯片上,集成度很高,体积自然也是最小的。芯片本身是按工业测控环境要求设计的,内部布线很短,其抗工业噪音性能优于一般通用的CPU。单片机程序指令,常数及表格等固化在ROM中不易破坏,许多信号通道均在一个芯片内,故可靠性高。
(2)控制功能强
为了满足对对象的控制要求,单片机的指令系统均有极丰富的条件:分支转移能力,I/O口的逻辑操作及位处理能力,非常适用于专门的控制功能。
(3)低电压,低功耗,便于生产便携式产品
为了满足广泛使用于便携式系统,许多单片机内的工作电压仅为1.8V~3.6V,而工作电流仅为数百微安。
(4)易扩展
片内具有计算机正常运行所必需的部件。芯片外部有许多供扩展用的三总线及并行、串行输入/输出管脚,很容易构成各种规模的计算机应用系统。
(5)优异的性能价格比
单片机的性能极高。为了提高速度和运行效率,单片机已开始使用RISC流水线和DSP等技术。单片机的寻址能力也已突破64KB的限制,有的已可达到1MB和16MB,片内的ROM容量可达62MB,RAM容量则可达2MB。由于单片机的广泛使用,因而销量极大,各大公司的商业竞争更使其价格十分低廉,其性能价格比极高。
方案一:
采用STC89C51芯片作为硬件核心。STC89C51内部具有8KB ROM 存储空间,512字节数据存储空间,带有2K字节的EEPROM存储空间,与MCS-51系列单片机完全兼容,STC89C51可以通过串口下载。
方案二:
采用AT89S51。AT89S51片内具有8K字节程序存储空间,256字节的数据存储空间没有EEPROM存储空间,也与MCS-51系列单片机完全兼容,具有在线编程可擦除技术。
两种单片机都完全能够满足设计需要,STC89C51相对ATS89C52价格便宜,且抗干扰能力强。考虑到成本因素,因此选用STC89C51。

2.2.2、温度传感器设计方案论证

方案一:
由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化 的电压或电流采集过来,进行 A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到 A/D 转换电路,感温电路比较麻烦。
方案二:
进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器 DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
从以上两种方案,两种都完全能够满足设计需要,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

2.3、电路设计最终方案决定

综上各方案所述,对此次作品的方案选定: 采用STC89C51单片机作为主控制系统;采用DS18B20为传感器;采用数码管作为显示器件。

3、硬件设计介绍

3.1、STC89C51介绍

STC89C51是由深圳宏晶科技公司生产的与工业标准MCS-51指令集和输出管脚相兼容的单片机。

3.1.1、STC89C51主要功能及PDIP封装

STC89C51主要功能如表1所示,其PDIP封装如图1所示
主要功能特性
兼容MCS51指令系统 8K可反复擦写Flash ROM
32个双向I/O口 256x8bit内部RAM
3个16位可编程定时/计数器中断 时钟频率0-24MHz
2个串行中断 可编程UART串行通道
2个外部中断源 共6个中断源
2个读写中断口线 3级加密位
低功耗空闲和掉电模式 软件设置睡眠和唤醒功能
表1:STC89C51主要功能

3.1.2、STC89C51引脚介绍

① 主电源引脚(2根)
VCC(Pin40):电源输入,接+5V电源
GND(Pin20):接地线
②外接晶振引脚(2根)
XTAL1(Pin19):片内振荡电路的输入端
XTAL2(Pin20):片内振荡电路的输出端
③控制引脚(4根)
RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。
ALE/PROG(Pin30):地址锁存允许信号
PSEN(Pin29):外部存储器读选通信号
EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。
④可编程输入/输出引脚(32根)
STC89C51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。
P0口(Pin39~Pin32):8位双向I/O口线,名称为P0.0~P0.7
P1口(Pin1~Pin8):8位准双向I/O口线,名称为P1.0~P1.7
P2口(Pin21~Pin28):8位准双向I/O口线,名称为P2.0~P2.7
P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.7

在这里插入图片描述

3.1.3、单片机最小系统:

当在STC89C51单片机的RST引脚引入高电平并保持2个机器周期时,单片机内部就执行复位操作,按键手动复位有电平方式和脉冲方式两种。其中电平复位是通过RST端经过电阻与电源VCC接通而实现的。最小系统如图2所示。
在这里插入图片描述
电路以STC89C51单片机最小系统为控制核心,测温电路由DS18B20提供,输入部分采用三个独立式按键S1、S2、S3。数码管显示部分。具体电路连接,详见附录1。

3.2、DS18B20传感器介绍

DS18B20的性能特点如下:
(1) 采用DALLAS公司独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯;
(2)在使用中不需要任何外围元件;
(3)可用数据线供电,供电电压范围:+3.0V~+5.5V;
(4)测温范围:-55~+125℃。固有测温分辨率为0.5℃。当在-10℃~+85℃范围内,可确保测量误差不超过0.5℃,在-55~+125℃范围内,测量误差也不超过2℃;
(5)通过编程可实现9~12位的数字读数方式;
(6)用户可自设定非易失性的报警上下限值;
(7)支持多点的组网功能,多个DS18B20可以并联在唯一的三线上,实现多点测温
(8)负压特性,即具有电源反接保护电路。当电源电压的极性反接时,能保护DS18B20不会因发热而烧毁,但此时芯片无法正常工作;
(9)DS18B20的转换速率比较高,进行9位的温度值转换只需93.75ms;
(10)适配各种单片机或系统;
(11)内含64位激光修正的只读存储ROM,扣除8位产品系列号和8位循环冗余校验码(CRC)之后,产品序号占48位。出厂前产品序号存入其ROM中。在构成大型温控系统时,允许在单线总线上挂接多片DS18B20。
3.2.2 DS18B20引脚介绍
在这里插入图片描述
图3:DS18B20引脚
各引脚功能为:I/O为数据输入/输出端(即单线总线),它属于漏极开路输出,外接上拉电阻后,常态下呈高电平。UDD是可供选用的外部电源端,不用时接地,GND为地,NC空脚。
3.2.3 DS18B20的内部结构
DS18B20的内部结构主要包括7部分:寄生电源、温度传感器、64位激光(loser)ROM与单线接口、高速暂存器(即便筏式RAM,用于存放中间数据)、TH触发寄存器和TL触发寄存器,分别用来存储用户设定的温度上下限值、存储和控制逻辑、位循环冗余校验码(CRC)发生器。
在这里插入图片描述
图4:DS18B20内部结构

4、系统程序设计流程图

4.1、主程序软件设计

通过上述原理,已对密码锁整体运行环境有了充分认识,绘制主程序和子程序流程图,利用Keil软件,对单片机进行编程,如图4-1为主程序功能流程图:
在这里插入图片描述
4-1主程序功能流程图

4.2、温度采集的软件设计

如图4-2为温度采集的软件设计,主要功能是完成DS18B20的初始化工作,并进行读温度,将温度转化成为压缩BCD码 并在显示器上显示传感器所测得的实际温度。读出温度子程序的主要功能是读出RAM中的9字节,在读出时需要进行CRC校验,校验有错时不进行温度数据的改写。
![在这里插入图片描述](https://img-blog.csdnimg.cn/f295e07e21b447e9a0186f78b6f0094b.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAS2V2aW7nmoTlrabkuaDnq5k=,size_20,color_FFFFFF,t_70,g_se,x_16

4.3、温度采集算法软件设计

如下图为温度采集算法流程图,计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图。
在这里插入图片描述

4.4、温度转换命令子程序软件设计

如下图为温度转换命令子程序流程图,温度转换命令子程序主要是发温度转换开始命令,当采用12位分辩率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。
在这里插入图片描述

4.5、DS18B20的程序流程图

在这里插入图片描述

5、Proteus 仿真图

图5-1为正常温度界面图,图5-2为报警温度界面,实现实时显示和温度报警。
在这里插入图片描述

6、程序代码

#include <AT89X52.h> 
#define uint unsigned int
#define uchar unsigned char   	//宏定义
#define SET  P3_1    			//定义调整键
#define DEC  P3_2    			//定义减少键
#define ADD  P3_3    			//定义增加键
#define BEEP P3_6    			//定义蜂鸣器
#define ALAM P1_2				//定义灯光报警
#define DQ   P3_7     			//定义DS18B20总线I/O	
bit shanshuo_st;    			//闪烁间隔标志
bit beep_st;     				//蜂鸣器间隔标志
sbit DIAN = P0^5;        		//小数点
uchar x=0;      				//计数器
signed char m;     				//温度值全局变量
uchar n;      					//温度值全局变量
uchar set_st=0;     			//状态标志
signed char shangxian=38;  		//上限报警温度,默认值为38
signed char xiaxian=5;   		//下限报警温度,默认值为38
//uchar code  LEDData[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff};
uchar code  LEDData[]={0x5F,0x44,0x9D,0xD5,0xC6,0xD3,0xDB,0x47,0xDF,0xD7,0xCF,0xDA,0x9B,0xDC,0x9B,0x8B};

//============================================================================================
//====================================DS18B20=================================================
//============================================================================================
/*****延时子程序*****/
void Delay_DS18B20(int num)
{
  while(num--) ;
}
/*****初始化DS18B20*****/
void Init_DS18B20(void)
{
  unsigned char x=0;
  DQ = 1;         //DQ复位
  Delay_DS18B20(8);    //稍做延时
  DQ = 0;         //单片机将DQ拉低
  Delay_DS18B20(80);   //精确延时,大于480us
  DQ = 1;         //拉高总线
  Delay_DS18B20(14);
  x = DQ;           //稍做延时后,如果x=0则初始化成功,x=1则初始化失败
  Delay_DS18B20(20);
}
/*****读一个字节*****/
unsigned char ReadOneChar(void)
{
  unsigned char i=0;
  unsigned char dat = 0;
  for (i=8;i>0;i--)
  {
    DQ = 0;     // 给脉冲信号
    dat>>=1;
    DQ = 1;     // 给脉冲信号
    if(DQ)
    dat|=0x80;
    Delay_DS18B20(4);
  }
  return(dat);
}
/*****写一个字节*****/
void WriteOneChar(unsigned char dat)
{
  unsigned char i=0;
  for (i=8; i>0; i--)
  {
    DQ = 0;
    DQ = dat&0x01;
    Delay_DS18B20(5);
    DQ = 1;
    dat>>=1;
  }
}
/*****读取温度*****/
unsigned int ReadTemperature(void)
{
  unsigned char a=0;
  unsigned char b=0;
  unsigned int t=0;
  float tt=0;
  Init_DS18B20();
  WriteOneChar(0xCC);  //跳过读序号列号的操作
  WriteOneChar(0x44);  //启动温度转换
  Init_DS18B20();
  WriteOneChar(0xCC);  //跳过读序号列号的操作
  WriteOneChar(0xBE);  //读取温度寄存器
  a=ReadOneChar();     //读低8位
  b=ReadOneChar();    //读高8位
  t=b;				   //高8位转移到t
  t<<=8;			   //t数据左移8位
  t=t|a;			   //将t和a按位或,得到一个16位的数
  tt=t*0.0625;		   //将t乘以0.0625得到实际温度值(温度传感器设置12位精度,最小分辨率是0.0625)
  t= tt*10+0.5;     //放大10倍(将小数点后一位显示出来)输出并四舍五入
  return(t);		   //返回温度值
}
//=====================================================================================
//=====================================================================================
//=====================================================================================


/*****延时子程序*****/
void Delay(uint num)
{
 while( --num );
}
/*****初始化定时器0*****/
void InitTimer(void)
{
	TMOD=0x1;
	TH0=0x3c;
	TL0=0xb0;     //50ms(晶振12M)
}

/*****读取温度*****/
void check_wendu(void)
{
	uint a,b,c;
	c=ReadTemperature();  			//获取温度值
	a=c/100;     						//计算得到十位数字
	b=c/10-a*10;    					//计算得到个位数字
	m=c/10;      						//计算得到整数位
	n=c-a*100-b*10;    				//计算得到小数位
	if(m<0){m=0;n=0;}   				//设置温度显示上限
	if(m>99){m=99;n=9;}   				//设置温度显示上限    
}
/*****显示开机初始化等待画面*****/
void Disp_init(void)    
{
	P0 = ~0x80;      //显示----
	P2 = 0x7F;
	Delay(200);
	P2 = 0xDF;
	Delay(200);   
	P2 = 0xF7;
	Delay(200);
	P2 = 0xFD;
	Delay(200);
	P2 = 0xFF;         //关闭显示
}
/*****显示温度子程序*****/
void Disp_Temperature(void)     //显示温度
{
	P0 = ~0x98;      //显示C
	P2 = 0x7F;
	Delay(100);
	P2=0xff;
	P0=~LEDData[n];    //显示个位
	P2 = 0xDF;
	Delay(100);
	P2=0xff;
	P0 =~LEDData[m%10];    //显示十位
	DIAN = 0;         //显示小数点
	P2 = 0xF7;
	Delay(100);
	P2=0xff;
	P0 =~LEDData[m/10];    //显示百位
	P2 = 0xFD;
	Delay(100);
	P2 = 0xff;         //关闭显示
}
/*****显示报警温度子程序*****/
void Disp_alarm(uchar baojing)
{
	P0 =~0x98;      //显示C
	P2 = 0x7F;
	Delay(100);
	P2=0xff;
	P0 =~LEDData[baojing%10]; //显示十位
	P2 = 0xDF;
	Delay(100);
	P2=0xff;
	P0 =~LEDData[baojing/10]; //显示百位
	P2 = 0xF7;
	Delay(100);
	P2=0xff;
	if(set_st==1)P0 =~0xCE;
	else if(set_st==2)P0 =~0x1A; //上限H、下限L标示
	P2 = 0xFD;
	Delay(100);
	P2 = 0xff;         //关闭显示
}
/*****报警子程序*****/
void Alarm()
{
	if(x>=10){beep_st=~beep_st;x=0;}
	if((m>=shangxian&&beep_st==1)||(m<xiaxian&&beep_st==1))
	{
		BEEP=0;
		ALAM=0;
	}
	else
	{
		BEEP=1;
		ALAM=1;
	}
}
/*****主函数*****/
void main(void)
{
    uint z;
 InitTimer();    //初始化定时器
 EA=1;      //全局中断开关
 TR0=1;
 ET0=1;      //开启定时器0
 IT0=1;        
 IT1=1;
 check_wendu();
 check_wendu();
 for(z=0;z<300;z++)
 {
  Disp_init();        
  }
 while(1)
  {
  if(SET==0)
  {
   Delay(2000);
   do{}while(SET==0);
   set_st++;x=0;shanshuo_st=1;
   if(set_st>2)set_st=0;
  }
  if(set_st==0)
  {
   EX0=0;    //关闭外部中断0
   EX1=0;    //关闭外部中断1
    check_wendu();
      Disp_Temperature();
   Alarm();   //报警检测
  }
  else if(set_st==1)
  {
   BEEP=1;    //关闭蜂鸣器
   ALAM=1;
   EX0=1;    //开启外部中断0
   EX1=1;    //开启外部中断1
   if(x>=10){shanshuo_st=~shanshuo_st;x=0;}
   if(shanshuo_st) {Disp_alarm(shangxian);}
  }
  else if(set_st==2)
  {
   BEEP=1;    //关闭蜂鸣器
   ALAM=1;
   EX0=1;    //开启外部中断0
   EX1=1;    //开启外部中断1
   if(x>=10){shanshuo_st=~shanshuo_st;x=0;}
   if(shanshuo_st) {Disp_alarm(xiaxian);}
  }
    }
}

/*****定时器0中断服务程序*****/
void timer0(void) interrupt 1
{
 TH0=0x3c;
 TL0=0xb0;
 x++;
}
/*****外部中断0服务程序*****/
void int0(void) interrupt 0
{
 
 EX0=0;      //关外部中断0
 if(DEC==0&&set_st==1)
 {
  	do{
		Disp_alarm(shangxian);
	}
 	while(DEC==0);
  	shangxian--;
  	if(shangxian<xiaxian)shangxian=xiaxian;
 }
 else if(DEC==0&&set_st==2)
 {
  	do{
		Disp_alarm(xiaxian);
	}
 	while(DEC==0);
 	xiaxian--;
  	if(xiaxian<0)xiaxian=0;
 }
}
/*****外部中断1服务程序*****/
void int1(void) interrupt 2
{
 EX1=0;      //关外部中断1
 if(ADD==0&&set_st==1)
 {
 	do{
		Disp_alarm(shangxian);
	}
 	while(ADD==0);
  	shangxian++;
  	if(shangxian>99)shangxian=99;
 }
 else if(ADD==0&&set_st==2)
 {
  	do{
		Disp_alarm(xiaxian);
	}
 	while(ADD==0);
  	xiaxian++;
  	if(xiaxian>shangxian)xiaxian=shangxian;
 }  
}

7、资源获取

在这里插入图片描述
项目的仿真和PCB工程已经放在下面公众号里面,可以关注公众号:Kevin的学习站,输入关键字:“51单片机温度报警器”,就可以免费获取啦!创作不易,但您的点赞、关注、收藏就是对我最大的鼓励!
在这里插入图片描述

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

毕设--基于51单片机的温度报警器设计 的相关文章

  • smile@smile-X3-S:~/app_install/mapx/build$ sudo make

    smile 64 smile X3 S app install mapx build span class token function sudo span span class token function make span span
  • 两台ubuntu之间文件互传方法

    1 查找本机ip地址 终端输入 xff08 不是自己的电脑 xff0c 是服务其的IP xff09 xff1a ifconfig span class token operator span a 查看inet 192打头的地址 2 查找本机
  • 单片机通过串口发送浮点类型数据

    单片机通过串口向串口助手或者其他器件发送数据时是不能直接发送浮点类型数据的 xff0c 通过printf 34 f 34 1 28 发送浮点数据 在串口助手看似是小数 xff0c 其实是字符串类型 xff0c 它们是各符号对应的ASSCII
  • 制作系统启动盘和制作windows+Ubuntu双系统启动盘

    制作windows 43 Ubuntu双系统启动盘 前言1 准备软件和工具 xff1a 开始1 软件和系统镜像自行在网上下载 2 下载好系统镜像之后 xff0c 开始制作ubuntu系统盘 xff1a 3 制作好ubuntu启动盘之后 xf
  • 虚拟机分配的硬盘太大怎么办?

    虚拟机分配的硬盘太大怎么办 xff1f 虚拟机分配的硬盘太大怎么办 xff1f 文章来源说明 xff1a 开始1 首先需要将虚拟机中多余的硬盘空间删除 xff0c 在此电脑中右键管理 xff0c 然后在磁盘管理中右键有多余空间的磁盘进行压缩
  • QT界面窗口的显示和隐藏,关闭

    这里写目录标题 QT窗口的显示和隐藏 xff1a 1 隐藏窗口1 1 介绍 xff1a 2 显示窗口2 1 介绍 xff1a 3 关闭窗口常用函数有 xff1a QT窗口的显示和隐藏 xff1a 1 隐藏窗口 span class toke
  • QT的中文显示乱码问题解决

    QT的中文显示乱码问题解决 QT的中文显示乱码问题解决 xff1a 1 查看源文件的编码格式 xff0c 有必要的话转换源文件的编码格式再重新编译运行尝试汉字能否正常显示 2 在代码里面解决 xff1a 3 用法 xff1a QT的中文显示
  • 0.9 - GPIO寄存器的C语言映射与STM32库函数雏形构建思路

    首先 xff0c 从参考手册可知 xff0c 程序存储器 xff08 flash xff09 数据存储器 SRAM 寄存器 外设控制 和输入输出端口被组织在同一个4GB的线性地址空间内 数据字节以小端格式存放在存储器中 一个字里的最低地址字
  • Linux文件/文件夹建立软硬链接

    建立软连接 xff1a sudo ln s home spike Downloads redis src redis server usr local bin redis server 源文件 链接到 目标文件 xff0c 这两个文件目录都
  • Linux中记录终端(Terminal)输出到文本文件四种方法

    Linux中记录终端 xff08 Terminal xff09 输出到文本文件 Linux中记录终端 xff08 Terminal xff09 输出到文本文件 一 xff0c 如何把命令运行的结果保存到文件当中 二 command gt f
  • C++ 标准库头文件汇集:

    C 43 43 标准库头文件汇集 xff1a C 43 43 标准库的接口由下列头文件的汇集定义 C 43 43 标准库头文件汇集 xff1a 概念库协程库工具库动态内存管理数值极限错误处理字符串库容器库迭代器库范围库算法库数值库本地化库输
  • C++开源库列表总结记录

    开源 C 43 43 库列表 前言包管理器库音频 音频指纹格式标签CD 性能测试 通信 并发 配置 XMLJSONYAMLTOMLHOCONCSS容器 密码学 数据库 嵌入语言绑定 嵌入式 实时 文件元数据 金融计算 游戏引擎架构 通用多媒
  • C++转义序列和操作符优先级

    C 43 43 转义序列和操作符优先级 1 转义序列 xff1a 2 C 43 43 运算符优先级注解 1 转义序列 xff1a 转义序列 描述 表示 简单转义序列 39 单引号 ASCII 编码中为字节 0x27 34 双引号 ASCII
  • PX4:Policy “CMP0097“ is not known to this version of CMake.

    make px4 fmu v3 时报的错 CMake版本的问题 由https blog csdn net zhizhengguan article details 118380965推测 xff0c 删除cmake policy也没事 ma
  • 安装Anaconda3后再安装ROS(用于PX4)

    记录一下安装anaconda后再安装ROS xff0c 方便未来找错误 出现no module wstool 仔细观察报错信息发现调用的库都在anaconda3 lib python3 7里面了 随后按照https www cnblogs
  • Offboard仿真时出现CMD: Unexpected command 176, result 0

    在用PX4 43 gazebo 43 ROS仿真offboard例程时 xff0c 如果出现以下问题 xff1a 运行以下命令 xff1a roslaunch mavros px4 launch fcu url span class tok
  • Offboard例程的python版本

    因为python的库很丰富 xff0c 有现成的解方程库 xff0c 比如sympy 自己写了一份python版本的自动起飞2m的程序 假设自定义的包名为offb xff0c 在offb下新建scripts文件夹 xff0c 将py文件放在
  • 子类与父类构造函数调用顺序

    子类与父类构造函数调用顺序 构造函数 当创建子类对象时 构造函数的调用顺序 xff1a 静态数据成员的构造函数 gt 父类的构造函数 gt 非静态的数据成员的构造函数 gt 自己的构造函数 注意 无论创建几个对象 该类的静态成员只构建一次
  • 0.1- 机械加工工艺-----切削加工基础

    1 钳工 xff1a 通过工人手持工具进行切削加工 机械加工 xff1a 采用不同的机床 xff08 如车床 铣 床 刨床 磨床 钻床等 xff09 对工 件进行切削加工 2 零件几何参数 xff1a 1 宏观几何参数 xff1a 包括 x
  • 判断当前机器的字节序是大端还是小端?

    字节序 字节序是指多字节数据在计算机内存中存储或者网络传输时各字节的存储顺序 大端字节序 xff08 Big endian xff09 大端存储模式是指数据的高字节保存在内存的低地址中 xff0c 而数据的低字节保存在内存的高地址中 小端字

随机推荐