教程 | 阿克曼结构移动机器人的gazebo仿真(五)

2023-05-16

第四章、用xacro优化URDF并配置gazebo仿真插件

1►前言

上节用简易模型写了一个小车的URDF代码,这一节将用xacro对其进行优化,这里我并不打算用宏对参数进行封装,因为我个人觉得这样看起来会比较直观,方便读者阅读。

2►配置主xacro文件

新建racecar.xacro文件,将上一节racebot.urdf中的代码复制过来并进行修改,整体代码如下:

<?xml version="1.0" encoding="utf-8"?>
<robot name="racebot" xmlns:xacro="http://www.ros.org/wiki/xacro">
    <xacro:include filename="$(find racebot_description)/urdf/ackermann/macros.xacro" />  
    <link name="base_footprint">
    </link>
    <link name="base_link">
        <visual>
            <geometry>
                <box size="0.28 0.1 0.03"/>
                <!-- <mesh filename="package://tianracer_description/meshes/base_link.STL" /> -->
            </geometry>
            <!-- <origin xyz="0 0 -0.023" rpy="0 0 0" /> -->
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="yellow">
                <color rgba="0.8 0.3 0.1 0.5" />
            </material>
        </visual>
        <collision>
            <geometry>
                <box size="0.28 0.1 0.03" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
    </link>
    <joint name="base_link2base_footprint" type="fixed">
        <parent link="base_footprint" />
        <child link="base_link"/>
        <origin xyz="0 0 0.032" rpy="0 0 0" />
    </joint>
    <link name="base_inertia">
    <inertial>
            <origin xyz="0 0 0" />
            <mass value="4" />
            <inertia ixx="0.0264" ixy="0" ixz="0" iyy="0.0294" iyz="0" izz="0.00364" />
        </inertial>
    </link>    
    <joint name="chassis_inertia_joint" type="fixed">
    <origin xyz="0 0 0" rpy="0 0 0" />
    <parent link="base_link" />
    <child link="base_inertia" />
  </joint>
    <link name="left_steering_hinge">
        <visual>
            <geometry>
                <cylinder radius="0.01" length="0.005" />
                <!-- <sphere radius="0.015" /> -->
            </geometry>
            <origin xyz="0 0 0" rpy="1.57 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.01" length="0.005" />
                <!-- <sphere radius="0.015" /> -->
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="1.57 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="0.5" />
            <inertia ixx="1.35E-05" ixy="0" ixz="0" iyy="1.35E-05" iyz="0" izz="2.5E-05" />
        </inertial>
    </link>
    <joint name="left_steering_hinge_joint" type="revolute">
        <parent link="base_link" />
        <child link="left_steering_hinge" />
        <origin xyz="0.13 0.065 0" />
        <axis xyz="0 0 1" />
        <limit lower="-0.6" upper="0.6" effort="5.0" velocity="1000.0"/>
    </joint>
    <xacro:steering_hinge_transmission name="left_steering_hinge" />
    <link name="left_front_wheel">
        <visual>
            <geometry>
                <cylinder radius="0.033" length="0.02" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.57 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.032" length="0.02" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="1.57 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="2.0" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>

    <joint name="left_front_wheel_joint" type="continuous">
        <parent link="left_steering_hinge" />
        <child link="left_front_wheel" />
        <origin xyz="0 0.025 0" />
        <axis xyz="0 1 0" />
        <limit effort="10" velocity="1000" />
    </joint>
     <xacro:wheel_transmission name="left_front_wheel" />
<link name="right_steering_hinge">
        <visual>
            <geometry>
                 <cylinder radius="0.01" length="0.005" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.57 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.01" length="0.005" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="1.57 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="0.5" />
            <inertia ixx="1.35E-05" ixy="0" ixz="0" iyy="1.35E-05" iyz="0" izz="2.5E-05" />
        </inertial>
    </link>
    <joint name="right_steering_hinge_joint" type="revolute">
        <parent link="base_link" />
        <child link="right_steering_hinge" />
        <origin xyz="0.13 -0.065 0" />
        <axis xyz="0 0 1" />
        <limit lower="-0.6" upper="0.6" effort="5.0" velocity="1000.0"/>
    </joint>
    <xacro:steering_hinge_transmission name="right_steering_hinge" />
     <link name="right_front_wheel">
        <visual>
            <geometry>
                <cylinder radius="0.033" length="0.02" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.57 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.032" length="0.02" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="1.57 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="2.0" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>
    <joint name="right_front_wheel_joint" type="continuous">
        <parent link="right_steering_hinge" />
        <child link="right_front_wheel" />
        <origin xyz="0 -0.025 0" />
        <axis xyz="0 1 0" />
        <limit effort="10" velocity="1000" />
    </joint>
    <xacro:wheel_transmission name="right_front_wheel" />
    <link name="left_rear_wheel">
        <visual>
            <geometry>
                <cylinder radius="0.032" length="0.02" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.57 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.032" length="0.02" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="1.57 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="2.0" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>
    <joint name="left_rear_wheel_joint" type="continuous">
        <parent link="base_link" />
        <child link="left_rear_wheel" />
        <origin xyz="-0.13 0.09 0" />
        <axis xyz="0 1 0" />
        <limit effort="10" velocity="1000" />
    </joint>
    <xacro:wheel_transmission name="left_rear_wheel" />
    <link name="right_rear_wheel">
        <visual>
            <geometry>
                <cylinder radius="0.032" length="0.02" />
            </geometry>
            <origin xyz="0 0 0" rpy="1.57 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.032" length="0.02" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="1.57 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="2.0" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>
    <joint name="right_rear_wheel_joint" type="continuous">
        <parent link="base_link" />
        <child link="right_rear_wheel" />
        <origin xyz="-0.13 -0.09 0" />
        <axis xyz="0 1 0" />
        <limit effort="10" velocity="1000" />
    </joint>
    <xacro:wheel_transmission name="right_rear_wheel" />
    <link name="camera">
        <visual>
            <geometry>
                <box size="0.005 0.03 0.03"/>
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <box size="0.005 0.03 0.03"/>
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="0.05" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>
    <joint name="camera_joint" type="fixed">
        <parent link="base_link" />
        <child link="camera" />
        <origin xyz="0.14851 0.0022137 0.0975" />
        <axis xyz="0 0 1" />
    </joint>
    <link name="real_sense">
        <visual>
            <geometry>
                <box size="0.01 0.1 0.02"/>
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <box size="0.01 0.1 0.02"/>
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="0.05" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>

    <joint name="realsense_joint" type="fixed">
        <parent link="base_link" />
        <child link="real_sense" />
        <origin xyz="0.19864 0.0038046 0.052021" />
        <axis xyz="0 0 1" />
    </joint>
    <link name="lidar">
        <visual>
            <geometry>
                <cylinder radius="0.03" length="0.06" />
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <cylinder radius="0.03" length="0.06" />
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="0.1" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>
    <joint name="lidar_joint" type="fixed">
        <parent link="base_link" />
        <child link="lidar" />
        <origin xyz="0.093603 0 0.12377" />
        <axis xyz="0 0 1" />
    </joint>
    <link name="imu">
        <visual>
            <geometry>
                <box size="0.01 0.01 0.005"/>
            </geometry>
            <origin xyz="0 0 0" rpy="0 0 0" />
            <material name="black">
                <color rgba="0.0 0.0 0.0 1.0" />
            </material>
        </visual>
        <collision>
            <geometry>
                <box size="0.01 0.01 0.005"/>
            </geometry>
            <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
        </collision>
        <inertial>
            <origin xyz="0 0 0" />
            <mass value="0.05" />
            <inertia ixx="6.64E-04" ixy="0" ixz="0" iyy="6.64E-04" iyz="0" izz="1.02E-03" />
        </inertial>
    </link>
    <joint name="imu_joint" type="fixed">
        <parent link="base_link" />
        <child link="imu" />
        <origin xyz="0 0 0.02" />
        <axis xyz="0 0 1" />
    </joint>
  <xacro:include filename="$(find racebot_description)/urdf/ackermann/racecar.gazebo" />
</robot>

代码起始和末尾添加了两个文件,通过xacro封装引用进来。这两个xacro文件是接下去要配置的传动文件macros.xacro以及gazebo插件racecar.gazebo。

3►添加传动transmission

创建macro.xacro文件,该代码给前后轮以及前轮摆转配置了传动transmission元素,代码如下:

<?xml version="1.0"?>
<robot name="racebot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<!-- transmission macros -->
<xacro:macro name="wheel_transmission" params="name">
  <transmission name="${name}_transmission" type="SimpleTransmission">
    <type>transmission_interface/SimpleTransmission</type>
    <joint name="${name}_joint">
      <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface>
    </joint>
    <actuator name="${name}_motor">
      <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface>
      <mechanicalReduction>1</mechanicalReduction>
    </actuator>
  </transmission>
</xacro:macro>
<xacro:macro name="steering_hinge_transmission" params="name">
  <transmission name="${name}_transmission" type="SimpleTransmission">
    <type>transmission_interface/SimpleTransmission</type>
    <joint name="${name}_joint">
      <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface>
    </joint>
    <actuator name="${name}_motor">
      <hardwareInterface>hardware_interface/EffortJointInterface</hardwareInterface>
      <mechanicalReduction>1</mechanicalReduction>
    </actuator>
  </transmission>
</xacro:macro>
</robot>

值得注意的是,引用该文件时,要将路径代码放置到racecar.xacro代码的最上端位置,如上代码所示,否则将无法引用到,并且在需要添加传动的link后面添加宏定义,以左前轮以及左前轮摆转为例:

<xacro:wheel_transmission name="left_front_wheel" />
 .
 .
 .
 <xacro:steering_hinge_transmission name="right_steering_hinge" />

4►配置gazebo插件

要让小车在gazebo中仿真,并且让小车能够进行建图导航,需要给小车的摄像头,激光雷达等link添加传感器插件,下面将进行配置,新建racecar.gazebo文件,开头代码:

<?xml version="1.0"?>
<robot name="racebot" xmlns:xacro="http://www.ros.org/wiki/xacro">
。
。
。
</robot>

配置各个link的颜色:

由于车轮实际上会接触地面,因此会与地面发生物理相互作用,将各个link添加部件材料的附加信息,并且定义各个link的颜色信息。参考gazebo官网 :http://gazebosim.org/tutorials/?tut=ros_urdf

<!-- Gazebo references -->
<gazebo reference="base_link">
  <mu1 value="0.0"/>
  <mu2 value="0.0"/>
  <kp  value="10000000.0" />
  <kd  value="1.0" />
  <material>Gazebo/Red</material>
</gazebo>
<gazebo reference="left_rear_wheel">
  <mu1 value="2.0"/>
  <mu2 value="2.0"/>
  <kp  value="10000000.0" />
  <kd  value="1.0" />
  <fdir1 value="1 0 0"/>
  <material>Gazebo/Black</material>
</gazebo>
<gazebo reference="right_rear_wheel">
  <mu1 value="2.0"/>
  <mu2 value="2.0"/>
  <kp  value="10000000.0" />
  <kd  value="1.0" />
  <fdir1 value="1 0 0"/>
  <material>Gazebo/Black</material>
</gazebo>
<gazebo reference="left_front_wheel">
  <mu1 value="2.0"/>
  <mu2 value="2.0"/>
  <kp  value="10000000.0" />
  <kd  value="1.0" />
  <fdir1 value="0 0 1"/>
  <material>Gazebo/Black</material>
</gazebo>
<gazebo reference="right_front_wheel">
  <mu1 value="2.0"/>
  <mu2 value="2.0"/>
  <kp  value="10000000.0" />
  <kd  value="1.0" />
  <fdir1 value="0 0 1"/>
  <material>Gazebo/Black</material>
</gazebo>
<gazebo reference="lidar">
  <material>Gazebo/Black</material>
</gazebo>
<gazebo reference="camera">
  <material>Gazebo/Black</material>
</gazebo>
<gazebo reference="real_sense">
  <material>Gazebo/Grey</material>
</gazebo>

配置ros_control:

由于gazebo并没阿克曼车型的插件,要链接gazebo与ros,我们先添加ros_control插件,它读取所有transmission标记,以及joint_state_publisher插件。

<!-- Gazebo Plugins -->
<gazebo>
  <plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
    <robotNamespace>/racebot</robotNamespace>
    <robotParam>robot_description</robotParam>
    <robotSimType>gazebo_ros_control/DefaultRobotHWSim</robotSimType>
    <legacyModeNS>true</legacyModeNS>
  </plugin>
</gazebo>

注意命名空间要设置为/racebot。

配置激光雷达插件:

<!-- hokuyo -->
  <gazebo reference="lidar">
    <material>Gazebo/Grey</material>
    <sensor type="ray" name="hokuyo_sensor">
      <pose>0 0 0.0124 0 0 0</pose>
      <visualize>false</visualize>
      <update_rate>40</update_rate>
      <ray>
        <scan>
          <horizontal>
            <samples>1081</samples>
            <resolution>1</resolution>
            <min_angle>-2.3561944902</min_angle>
            <max_angle>2.3561944902</max_angle>
          </horizontal>
        </scan>
        <range>
          <min>0.1</min>
          <max>10.0</max>
          <resolution>0.01</resolution>
        </range>
        <noise>
          <mean>0.0</mean>
          <stddev>0.01</stddev>
        </noise>
      </ray>
      <plugin name="gazebo_ros_hokuyo_controller" filename="libgazebo_ros_laser.so">
        <topicName>/scan</topicName>
        <frameName>lidar</frameName>
      </plugin>
    </sensor>
  </gazebo>

配置深度相机插件:

由于配置realsense插件过于复杂,因此这里用kinect插件来代替realsense插件。

<gazebo reference="real_sense">
      <sensor type="depth" name="real_sense">
          <always_on>true</always_on>
          <update_rate>20.0</update_rate>
          <camera>
              <horizontal_fov>${60.0*3.14/180.0}</horizontal_fov>
              <image>
                  <format>R8G8B8</format>
                  <width>640</width>
                  <height>480</height>
              </image>
              <clip>
                  <near>0.05</near>
                  <far>8.0</far>
              </clip>
          </camera>
          <plugin name="kinect_real_sense_controller" filename="libgazebo_ros_openni_kinect.so">
              <cameraName>real_sense</cameraName>
              <alwaysOn>true</alwaysOn>
              <updateRate>10</updateRate>
              <imageTopicName>rgb/image_raw</imageTopicName>
              <depthImageTopicName>depth/image_raw</depthImageTopicName>
              <pointCloudTopicName>depth/points</pointCloudTopicName>
              <cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>
              <depthImageCameraInfoTopicName>depth/camera_info</depthImageCameraInfoTopicName>
              <frameName>real_sense</frameName>
              <baseline>0.1</baseline>
              <distortion_k1>0.0</distortion_k1>
              <distortion_k2>0.0</distortion_k2>
              <distortion_k3>0.0</distortion_k3>
              <distortion_t1>0.0</distortion_t1>
              <distortion_t2>0.0</distortion_t2>
              <pointCloudCutoff>0.4</pointCloudCutoff>
          </plugin>
      </sensor>
  </gazebo>

配置单目相机插件:

<!-- camera -->
<gazebo reference="camera">
  <material>Gazebo/Grey</material>
    <sensor type="camera" name="camera">
      <update_rate>30.0</update_rate>
      <camera name="camera">
        <horizontal_fov>1.3962634</horizontal_fov>
        <image>
          <width>800</width>
          <height>800</height>
          <format>R8G8B8</format>
        </image>
        <clip>
          <near>0.02</near>
          <far>300</far>
        </clip>
        <noise>
          <type>gaussian</type>
          <mean>0.0</mean>
          <stddev>0.007</stddev>
        </noise>
      </camera>
      <plugin name="camera_controller" filename="libgazebo_ros_camera.so">
        <alwaysOn>true</alwaysOn>
        <updateRate>0.0</updateRate>
        <cameraName>rrbot/camera1</cameraName>
        <imageTopicName>image_raw</imageTopicName>
        <cameraInfoTopicName>camera_info</cameraInfoTopicName>
        <frameName>camera</frameName>
        <hackBaseline>0.07</hackBaseline>
        <distortionK1>0.0</distortionK1>
        <distortionK2>0.0</distortionK2>
        <distortionK3>0.0</distortionK3>
        <distortionT1>0.0</distortionT1>
        <distortionT2>0.0</distortionT2>
      </plugin>
    </sensor>
</gazebo>

配置imu插件:

<gazebo reference="imu">
        <material>Gazebo/Orange</material>
        <gravity>true</gravity>
        <sensor name="imu_sensor" type="imu">
            <always_on>true</always_on>
            <update_rate>100</update_rate>
            <visualize>true</visualize>
            <topic>__default_topic__</topic>
            <plugin filename="libgazebo_ros_imu_sensor.so" name="imu_plugin">
                <topicName>imu</topicName>
                <bodyName>imu</bodyName>
                <updateRateHZ>100.0</updateRateHZ>
                <gaussianNoise>0.0</gaussianNoise>
                <xyzOffset>0 0 0</xyzOffset>
                <rpyOffset>0 0 0</rpyOffset>
                <frameName>imu_link</frameName>
            </plugin>
            <pose>0 0 0 0 0 0</pose>
        </sensor>
</gazebo>

5►配置gazebo插件在gazebo中显示并演示传感器效果

创建racebot_gazebo功能包,并创建如下文件夹:

 在launch文件夹中创建racebot.launch文件:

<?xml version="1.0"?>
<launch>
      <!-- 设置launch文件的参数 -->
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>
    <!--模型车的起点放置位置-->
    <arg name="x_pos" default="0"/>
    <arg name="y_pos" default="0"/>
    <arg name="z_pos" default="0"/>
    <arg name="R_pos" default="0"/>
    <arg name="P_pos" default="0"/>
    <arg name="Y_pos" default="0"/>
  <!--运行gazebo仿真环境-->
  <include file="$(find gazebo_ros)/launch/empty_world.launch">
          <arg name="debug" value="$(arg debug)" />
          <arg name="gui" value="$(arg gui)" />
          <arg name="paused" value="$(arg paused)"/>
          <arg name="use_sim_time" value="$(arg use_sim_time)"/>
          <arg name="headless" value="$(arg headless)"/>
          <arg name="world_name" value="$(find racebot_gazebo)/worlds/room_mini.world"/>
               <!-- .world文件的地址-->
      </include>
  <!-- 加载机器人模型描述参数 -->
  <param name="robot_description" command="$(find xacro)/xacro --inorder '$(find racebot_description)/urdf/ackermann/racecar.xacro'"/>
        <!-- 在gazebo中加载机器人模型-->
    <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model racebot -param robot_description -x $(arg x_pos) -y $(arg y_pos) -z $(arg z_pos) -R $(arg R_pos) -P $(arg P_pos) -Y $(arg Y_pos)"/> 
    <!-- <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model tianracer -param robot_description -x $(arg x_pos) -y $(arg y_pos) -z $(arg z_pos)"/>  -->
         
  <!-- ros_control racecar launch file -->
    <!--Launch the simulation joystick control-->
<!-- <node pkg="tf2_ros" type="static_transform_publisher" name="static_transform_publisher" args="0 0 0 -1.57 0 -1.57 /real_sense /real_sense_depth" /> -->
</launch>

在worlds文件夹中,将之前用于mini小车仿真的room_mini.world文件放入,使得racebot载入有room_mini地图的gazebo仿真环境中。

roslaunch racebot_gazebo racebot.launch

可以看到小车已经加载到gazebo环境中,然而此时无法控制小车运动,因为还未配置controllers,但是我们可以读取到传感器参数。

读取imu参数:

rostopic echo /imu

读取雷达数据:

打开rviz

rviz

将fixed_frame改为base_footprint, 点击add-->by topic-->laserScan,此时在rviz中即可显示雷达点云

单目摄像头:

在rviz中add-->by topic-->/rrbot/camera1/image_raw/camera即可添加相机插件,并显示图像:

深度摄像头:

深度摄像头查看深度图像与单目摄像头同理add-->by topic-->realsense/depth/image_raw/camera

 

只是在添加pointcloud2时会出现问题,add-->by topic-->realsense/depth/points/pointcloud2,会发现彩色点云出现在小车正上方,原因是在kinect中图像数据与点云数据使用了两套坐标系统,且两套坐标系统位姿并不一致。

解决方法有两种:

1.可以在launch文件中加入坐标变换,即可解决这一现象。

<node pkg="tf2_ros" type="static_transform_publisher" name="static_transform_publisher" args="0 0 0 -1.57 0 -1.57 /support /support_depth" />

详细参考奥特学园《kinect信息仿真以及显示》https://sourl.cn/ziwDEU

2.第二种方法是在urdf中加入新的link,即使用点云数据的link,并通过joint做坐标变换来解决。

<link name="realsense_depth"/>
    <joint name="realsense_depth_joint" type="fixed">
            <origin xyz="0 0 0" rpy="-1.5708 0 -1.5708"/>
            <parent link="real_sense"/>
            <child link="realsense_depth"/>
    </joint>

修改插件

<gazebo reference="real_sense">
      <sensor type="depth" name="real_sense">
          <always_on>true</always_on>
          <update_rate>20.0</update_rate>
          <camera>
              <horizontal_fov>${60.0*3.14/180.0}</horizontal_fov>
              <image>
                  <format>R8G8B8</format>
                  <width>640</width>
                  <height>480</height>
              </image>
              <clip>
                  <near>0.05</near>
                  <far>8.0</far>
              </clip>
          </camera>
          <plugin name="kinect_real_sense_controller" filename="libgazebo_ros_openni_kinect.so">
              <cameraName>real_sense</cameraName>
              <alwaysOn>true</alwaysOn>
              <updateRate>10</updateRate>
              <imageTopicName>rgb/image_raw</imageTopicName>
              <depthImageTopicName>depth/image_raw</depthImageTopicName>
              <pointCloudTopicName>depth/points</pointCloudTopicName>
              <cameraInfoTopicName>rgb/camera_info</cameraInfoTopicName>
              <depthImageCameraInfoTopicName>depth/camera_info</depthImageCameraInfoTopicName>
              <frameName>realsense_depth</frameName>
              <baseline>0.1</baseline>
              <distortion_k1>0.0</distortion_k1>
              <distortion_k2>0.0</distortion_k2>
              <distortion_k3>0.0</distortion_k3>
              <distortion_t1>0.0</distortion_t1>
              <distortion_t2>0.0</distortion_t2>
              <pointCloudCutoff>0.4</pointCloudCutoff>
          </plugin>
      </sensor>
  </gazebo>

6►小结

本节内容关于小车传动的添加,以及配置了小车上面的一些插件,下一节内容,通过配置controller让小车动起来。

参考资料:

1.古月老师的《ROS机器人开发实践》

2.奥特学园《6.7.4 kinect信息仿真以及显示》https://sourl.cn/ziwDEU

3.gazebo官网 http://gazebosim.org/tutorials/?tut=ros_urdf

本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系:hwhale#tublm.com(使用前将#替换为@)

教程 | 阿克曼结构移动机器人的gazebo仿真(五) 的相关文章

随机推荐

  • LeetCode 跳跃游戏 题解

    题述 xff1a 给定一个非负整数数组 nums xff0c 你最初位于数组的 第一个下标 数组中的每个元素代表你在该位置可以跳跃的最大长度 判断你是否能够到达最后一个下标 思路 xff1a 阅读题目我们可以发现只要数组里面没有0 我们就一
  • #error This file was generated by a newer version of protoc which is 【protoc版本问题】

    在github上下载自己适合的protoc版 xff08 我的环境是ubuntu18 04 ros melodic版本 xff09 gazebo9对应的最低版本protoc为3 0 0 我之前版本为3 14 0会提示目前文件由旧版本生成 x
  • Dispatcher.BeginInvoke()方法使用不当导致UI界面卡死的原因分析

    前段时间 xff0c 公司同事开发了一个小工具 xff0c 在工具执行过程中 xff0c UI 界面一直处于卡死状态 通过阅读代码发现 xff0c 主要是由于 Dispatcher BeginInvoke 方法使用不当导致的 本文将通过一个
  • List的Clear方法与RemoveAll方法用法小结

    示例代码 using System using System Collections Generic namespace ListClearExp class Program static void Main string args Lis
  • 利用C#访问注册表获取软件的安装路径

    绝大多数软件 xff0c 基本上都会在注册表中记录自己的名字和安装路径信息 在注册表中记录这些信息的位置是 xff1a HKEY LOCAL MACHINE SOFTWARE Microsoft Windows CurrentVersion
  • 使用ValidationRule类来检查用户输入的有效性

    1 新建WPF应用程序ValidationRuleExp 整个程序的结构如下图所示 程序运行起来后的效果如下图所示 用户操作程序时 xff0c 先输入固话 手机 Email 个人网站等信息 xff0c 再点击右侧的 点我记住你 按钮 xff
  • 关闭窗体后,进程仍然在运行的问题重现与解决

    1 问题陈述 在开发中 xff0c 遇到这样一个问题 xff1a 点击程序主窗体右上角的叉号关闭应用程序后 xff0c 程序的进程却没有关闭 通过查阅资料 xff0c 了解到 xff0c 产生此类问题的原因主要有以下两点 xff1a 1 x
  • Python判断一个字符串是否包含子串的几种方法

    1 使用成员操作符 in span class hljs prompt gt gt gt span s 61 span class hljs string 39 nihao shijie 39 span span class hljs pr
  • easyui-datagrid获取行和列数据

    1 获取当前行 span class hljs keyword var span row 61 span class hljs string 39 dg 39 span datagrid span class hljs string 39
  • No plugin found for prefix ‘tomcat7’ in the current project and in the plugin groups

    idea中开发javaweb应用 xff0c 使用mvn tomcat7 run命令运行应用时 xff0c 需要配置tomcat的maven插件 在没有配置的情况下会出现下面的错误提示 ERROR No plugin found for p
  • C#中的IComparable和IComparer接口

    C 中 xff0c 自定义类型 xff0c 支持比较和排序 xff0c 需要实现IComparable接口 IComparable接口存在一个名为CompareTo 的方法 xff0c 接收类型为object的参数表示被比较对象 xff0c
  • LeetCode Nim游戏 题解

    题述 xff1a 你和你的朋友 xff0c 两个人一起玩 Nim 游戏 xff1a 桌子上有一堆石头 你们轮流进行自己的回合 xff0c 你作为先手 每一回合 xff0c 轮到的人拿掉 1 3 块石头 拿掉最后一块石头的人就是获胜者 假设你
  • C#接口汇总

    1 IComparable和IComparer接口 用于比较和排序 IComparable 可比较的 xff0c 实现该接口的类 xff0c 便具有 可比较的 特性 IComparer 比较器 xff0c 实现该接口的类 xff0c 是一个
  • Python操作环境变量

    1 使用os读取环境变量 import os os getenv 39 path 39 os environ get 39 path 39 os environ 39 path 39 2 遍历打印所有环境变量 通过访问os environ可
  • 教程 | 阿克曼结构移动机器人的gazebo仿真(一)

    第一章 从SOLIDWORKS中导出URDF 二轮差速小车已经完结 接下去要进入阿克曼结构移动机器人的仿真 阿克曼小车的结构也就是我们看到最多的应用最广的车型 xff0c 也称为car like robot 在这里先挖下一个大坑 xff0c
  • TIANBOT MINI机器人使用blender进行贴图并导出详细教程

    很多小伙伴在看一些仿真视频中会看到 xff0c 仿真模型栩栩如生 xff0c 但是我们自己导出的模型总是不堪入目 xff0c 哪是因为你还没学会贴图 xff0c 下面我来教大家一步一步怎么学会贴图 首先我们打开blender并设置好简体中文
  • 什么是ROS2GO随身系统?

    随着ROS xff08 Robot Operating System xff09 机器人操作系统的越来越热 xff0c 大家都跃跃欲试 想一睹ROS的风采 xff0c 感受ROS的魅力 但是挡在初学者面前的第一个难题就是如何在Ubuntu系
  • 教程 | 阿克曼结构移动机器人的gazebo仿真(二)

    第二章 配置xacro文件 0 前言 上一节已经将urdf导出来了 xff0c 这一节需要配置一下xacro文件 先看一下导出的功能包在gazebo以及rviz中显示的效果 将功能包放进工作空间进行编译 xff0c source一下环境 x
  • 教程 | 阿克曼结构移动机器人的gazebo仿真(三)

    第三章 让小车动起来 1 配置controller 在tianracer description功能包新建config文件夹时 xff0c 我们可以通过一个yaml文件smart control config yaml来声明我们所需要的co
  • 教程 | 阿克曼结构移动机器人的gazebo仿真(五)

    第四章 用xacro优化URDF并配置gazebo仿真插件 1 前言 上节用简易模型写了一个小车的URDF代码 xff0c 这一节将用xacro对其进行优化 xff0c 这里我并不打算用宏对参数进行封装 xff0c 因为我个人觉得这样看起来